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FOREWORD

This rot)oct was peeparcd by the Appii_.cl Mrtthemat_cs Subdivisioa :rod

describes research st_pported jointly i_y c_mt_'at:t NAN _-;Zi;05 mid Republic

Aviation Corpo_'atio:_'s indcpcndvnt rc.-ear,:i_ program in Applied Mathematics

under RESD 11:'201-230, Cci_.slial Mcchani_:s.

The contract NAB s-2605 is wil.i_ Ma,sh:_ll Space Fliai;t Center, NASA,

m_d is monitored by W. 1.2. Mi_lc_-el tht' Ast_'odynamics& (kai_i;mce Theory Divi-

sion. The authors would like to exp_'_,.ss ti_mr appreciation to Mr, Miner for

his support and encouragement, as well as for maw illuminating discussions,

on the programs desceibcd in this report.
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ABSTRACT

Work done under contract NAS _-2(;o5 is tit.scribed ili ,t_,tail. The investi-

gations include application of the two I,.-¢cd center problem to lunar trajectories,

the development of two v,'u'iation of l)aLramcters schemes for near earth satellites,

development of numt_rical methods for the two point boundaw value problem in

the calculus of variations ,and development of a IIamittonian formulation suitable

for perturbatio_ solutions of optimization problems.
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IN TROD t C'['ION AND SUM MARY

The investigations carricd out under ti_is c(mtract fall into two categories:

celestial mechanics :rod ealculu,_ of variati{,ns. A i_'it,f summary of the w'lrious

problems studied is given in this intro(mction. The results of the studies have

appeared in five semimmual reports which are referenced in this outline and are

included in full, in the order in which they were submitted, with this rep(_rt.

A. Celestial Mechanics

I. Application of the Two-Fixed C_q_tcr Pr,d)lem to Lunar Trajectories

This study was e_u'ried ()tit in t_o p,_a'ts. First, a detailed

Ilamilton-,Tqcobi formulation of tke two-fixc(l center t)rr_lcn, was developed.

The action :rod ,angle variables were defined ,and the procc_iure for obtaining

perturbation equations [or the associated c:m,,nieal constants was outlined. Ti_is

matcriat is given in detail in the First Semi:mnual Report. Second, perturbation

e(luaLio;-,s for two-fixed center initial conditions were obtained in two ways for the

restricted prol,lem. At)proximate integrals of the pc'rturbation equations were de-

rived :m([ an extensive numerical :malysis w:ks carried out to determine the preci-

sion obtNnable from the approximate solutions. All details of the ,analysis and

results of the numerical study appem'cd in the Second Semiannual Report, Part I

mad the 'Iqaird Semi_umual Report, Pm't I.

Analysis of Variation-of-Parameters Techniques for Near
Earth Satellites

Perturbation crpl:,tions for two sets of two body parameters have

been obtained :rod integrated completely in first order ,and partially in sccond order

for the polar oblateness problem. The integration is carried out by a modified

Poisson method. These par,mneters have been selected so as to eliminate certain

diffieulti,.s, such as critical m_gles mad ambiguities for nea_r circular orbits, en-

eomatered with conventional parmneters. The first set of parameters investigated
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CONTE N TS

FOREWORD

A1;STI{ACT

INTI{ODUCTION AND SUM MARY

SEMIANNUAL tli';POIiTS

_First - l_,;_,!;;li_;ilI,,li-,J;_,_i_i l,'ormul_,li_m of the

Restricted i'iirc,. i;,_,iy l'z'_i_lcm in "ik't'l_'_> of the
Two Fixed ('el;it.:- I_l'obi,.ILi

-_econd - I°;trt I - Ai_in'ox¿_:l_tion of the Restricted

Problem by the "Iaa'o-t"ix_._i-Ccnter P1"ol_lem

_P:l_'t L_ - Two- Point Bom;{i;,r 3 -Value Problem

of the C:dcuius of Variations for ()ptimum Orbits

_'_lil'0 - Part t - Api_iic;_!.ion of the "IM'o Fixed Center

Problem to Lunar Trajectories

_'_:1,"_ il - I)itferentig_ Correction Scheme for the

(:ai<ulus t,i V;tl'i:tiiol',s

_ ourth - Pa_'t i - eXppiicatior, of Variation of Pa.ramete_'s

to the Polar O01atcnt, ss Problem

@art II - Approximate hlitial Values of I,a_z-r_mget

Multipliers for the _i\vo Poinl. Boundary Value ProOf:tin

/'qTifth - Part I - I)irac's (;cnc.ralized ttamiltonian l)ynamies

and the Pontrya_gin Principle

¢"t_art II - A I"irst Order Solution to the Polar

Oblateness Problem
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turned out to possess someundesir:fl_lc features. Analysis of the difficulties

led to formulation of tt_e second set, _hicll appears very promising at present,

and is still m_der investigation. The Fourth Semiannual Report, Part I

describes the first set of para.meters m_d includes the perturbation equations,

their first order solution m_d a discussion of the results. The same discussion

is carried out for the second set in the Fifth Semimmua.l Report, Part II.

B. Calculus of Variations

lo Numerical Mctimds for the Solution of Two Point Boundary
Value Problems

Ia] this study a dit(crcnt:al correcti()n scheme has been devel()p-

ed for the improvement of _hc approximate initial v;_lues of the adjoint variables

(Lagrm]gc , ..... _,phc[ _) _so th;tt :m intcg-ral functional _atisfying the desired boundary

conditions _s optimized. The adjoint v',tri:d_te_ satisly a system of eeNations that

are developed by applying the cl[issical methods of the calculus of variatmns,

properly extended, or Pontryagin's maximum principle.

A genera! tc:msition matrix i_as been derived for the variations

of the end conditions caused by the variations of the initial values of the adjoint

variables, including ti_c variations of the thrusting program and of the final time

of the nomina.1 optimum trajectory.

An iteration sci_cme has also been outlined for the cc, nvergence

of the differential corrections to the desired end conditions.

A method ha.-, i,cen c_tablished for ot_taining approximate initial

values of the Lagra_nge multipliers in the "'Pwo Point ]_oundary Value Problem

of the Calculus of Variations". ha this method the following assumptions have

been made:

a)

b)

Two burning periods are re.quire(t to accomplish the

opti mum trajectory.

The time intervals in these two regions of thrust :we

small so that the changes in velocity c,ma be obtained
from the solution to the "Two-Impulse Orbital Trans-

fer" problem.
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c) In the rcgdons of thrust the gravitational force may be
neglected.

Ia_ order to improve this method, the last assumption has been

modified m_d the gravitational acceleration is not neglected but is regarded as a

constant vector in each of the burnint4 regions.

I

t
!

I
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The de_ails of tb'sc investigations are given in Part II of the

Second, Third prodFoucth Scmi_mnual l{ep, cts.

o Applicatio_ oi I)irac's {;,'ncralized llamiltonian Dynamics

to Optimization ih-(,l,lcm,s

It wa._ found possible, u.*inZa tcchhi(iue developed by l)irae,

to obta_in a IIamiltonian focmul:tLion h_c ol)timization pcoi?l,.'ms, such that the

tlaaniltonian is c,'monical in both star,: :rod ct_JJtr(,l variables. The tlamiltordan

may furti,ct" bc used instead of the P(,i_tt-yagin Iiamiltoni:m in Pontryagin's

Ma.xin;un-_ Principle. The aim of tkis study, which is still under hwesti_ation,

is the dexci,)pment of a pertucbataoJ: d_cory for optimization problems. The

details of Dirac's technique, the construction of the lIamiltoni:m and its role in

the Maximum Prinicple are contained in tim Fifth Semiannual Report, Part I.

|

I

|
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This document is thc First Scmi_:._l::'.i i:,cpo:'t prepared by Republic

Aviation Corporu.tioa uaJ, cr NASA Co.:tract N .... .XAS_-2d05, "Rcsearch Rc-

gardm_ Guidance _t;_,_l Space Fl!'4ht T!,_<,ry I",_ !-:_ivc to the Rc_dczvous Prob-

Jam." The: cu_ract _',:_s i_itiatud _nd i._ n..):_ito_'cd by \V. Miner and R. l,toclkcr

of tt_e Aczoballistics L'fi)oratory, Gcor:4_. C. Marshall Space Flight CenLcr.

The document will apUc_*.- in s!i._i-tlv di:Lcrcnt format as a part of PIIOG-

]I=:SS :_-" . ......:,.POt.IT NO. 2 ON STUDLi.'S IN "F'TT," _:IEI.DS OF SPACE FL!G!IT AND

CU!DANC_ TIII::ORY, sponsored by the Acroballistics Division1 oi'thc Marshall

Space Fli_(ht Center.

The report was prcp-Lrcci by Dr. Mary I)aync and Mr. Samuel Pines of

Republic's Applied Mathematics Scctio:_., Appiicd Research anti Development

Center. The authors wish to cxprcs:; their apprcciatioafor many helpful

discussions with Air. Elie i.o\_%" and Dr. Georgc Nomicos and they especially

want to thank Dr. John Morrison whos_: comments, from the inception of fl_c

problem, have been most itlumhmtint;.
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REPUBLIC AVL,\TIOX COXPOIL-kTIOX

Fnrn_inL<da!c, L.!., New York

TIIE IL-k),IILTOX-JACO]3i FOII),IUL%TtON OF

TitZ I{ESTi{ICTED Tiilliflg BODY PROBLEM

IN TERMS OF THE TWO FLXED CEXTLt{ PROBLEM

By

MaG" Payne

Sanu_cl Pines

This report contains a development of the classical tIamilton-Jacobi

pertul'bation teclmiques, appl3qnf( the known solution of the Two Fixed Center

Pl'oblcm to the ResLricted Ti_rce Body Problem.

SFCT!OX ! - !NTI_ODUCTIOX

This report contains an out[inc of the development el a perturbation

procedure for solving the restricted tkrec body problem, ush_g the solution

of the two fixed ccntec problem as an intermediate o_'bit, rm the restricted

problen_, it is assumed that the two primary bodies move in circles about

their center of mass, the baryeenter. The primary 10odies will be fLxcd in a

coo_'dinate system rotating with their angular velocity, so tizat the use of the

t\vo fLxed center l)-'oblcm is immediately su;gested. Ti:e two fixed center

problem was fi]'bt treated by Eule_', who _scovcred _hat its equations oi"

motion a_e swp:trable in prelate spheriodial coordinates. A very complete

discussion of the two fixed center problem has bccn given by Charlier (1)

This treatment covers some of the same ground as this report. It is from the
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ilamiltonian point of v[ow a',](Jincludes a di,_<'c,,_sionof the action anti an_le

variables, and the way in which the two fixed center 1)FolJlo:_t would be used

as a basis for a t)ertaroation theory for ti:c r_utric_;d i)robh_._n. The only

tldng n_issing from Charlier's treatmc:_.t is a'.: ex_,l_,_,-__"' solution el t_:c' t\vo

fLxed center !)tel)It:u, which would bc cec_.ssaryfo_- the actu:d application to

the restricted problem. Formal ext)rcssic)n:_ for the action and anb[c variables

arc o}J[ained from a more ._._o(icr,n i)oF,_ o; \k_.w i)3., I-]uchheinl (fi) }3ric]

discussions of the two flied center f)_'oblc,= arc .4-iron in many standard text

bool<s such as \\]:ittnl<cr (;]), I.andau and Li!schi:z ('i) and \Vintner (5). The

explicit solution of the tv.'o fixed ccntc;" t)robl(::n i:as bc_,n obtained by _ncs

and Paync ((i). tn the present report, this solution will be combhled with a

II'tn_ihonian dcveloi):ucnt of the i)ro])ic:n 1o sho\v how perturbation equations

for the rcsti'ict_,d 1)robh_qn may be obt_Licd. A different developn_HU has been

c'_r:ic.d out r_.cc,ltlv by i>avidson and scnu_z-Arcnstorff ('). l/". this theory,

the initMi conditions of a two fLxed center 1)rob[era arc used as parameters

and a first ordci" correction for the rettricted prol_icP.1 is obtained in closed

foi'/:-,. Second-order corrections are o)tain(_(i ;_,, ._ n,;n_crical curve-fitth_,g "

SC_Ic_lle.

L_ this report, Section If will contain a discussion of the restrieLed

problem, and the way in \vhiehthe two fixed center l)robicm will be used. D_

Section III, the sohaion of the two fixed c,_ntcr problem will be outlined in

stff:icicnt detail for the determination of tile action and angle variables, wMch

is co{tried out ia Sections IV and V. Finally in Section VI a summary \_ill

})e c,-, _no±_ c,, of ti_e essential steps still necessary to obtain the solution of the

restricted problem.

I

I

I

1
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SECTION II - TI'I_: . _.'_.,v<TI_!CTIcI.) LK:',GBLE.M

The equations of motion of the :'cstricLed problem are

R -,_ _ - ,.z' --- ' ;5
r_ F 0

(].)

\vhcrc I{ is theposidon vector of _he vcl,icle in a coordinate system fLxcdin

si)acc' _1 and i_{2 are rest)echiveiy the position vectors of the vehicle from

earth :L_d 11!oo11 (with magnitudes r 1 and <2), and _ and Ix' are the gravita-

tio;-,:t_ constant tipacs mass of the cart,, :_.::u_ nloon, respectivc!y. Since t,ue

]_:ti' c_::',twi" (center of l]lass of e',Lrt}l an(_l 111oo11) l]lay be regarded as a point

f;_<c< in space, the vector R will iueimcforth 1)e regarded as relative _o a

sys:cm fk\cd in space with origin at the barycentcr. The earth and moon are

taken as moving in circles about the imryccntcr with angular velocity vector

. To use ti_e two fixed center problem as au approxi::mtion to the restricted

p,,_,,,cm, ii is necessary to ;vri;e the equations of motion in a coordinate

system in whick d_e earti_ and moon arc fixed. Such a systcn_ is one rotating

about the barycc.qtcr \vid_ angu]'ar vclocib' _ relative to the ftxed system.

Denoting ti_c position vcchor in the rotath_g system by l{', the equations of

motion (1) b_.eome

i!- E.,
_' =-_" ., _' 3 9_ x T_'-P. x (_ x_R,) (Z)

i"I r,)

It is readily shown that the Lagranglan for the equations of motion (2) is

oC : " ") 1 ") _ +__i (s)
= ._ R'" + _" R' x i'_ -} 7_ ._. X R')-_ + rl r'2

I
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and hence the momentum vector conjugate to the position vector R' is given

by

P : gradi{, _= _i{' : __ :< _P_

and the Hamiltonian for the problem is

1 p2 _ ,/
t1 = _P _i{' -o_= ,3-_ -_ ._ _R'X_P rl r'2

and the Hamiltonian equations are

i_ = -grad R, H = -

and

(4)

(a)

i31 , _e2
× _P -u ---g -u 3 (G)

r1 r 2

R' = grad p H = P - C ;< P_' (7)

It will be noted that Eq. (7) is equivalent to Eq. (4), and that ff P is replaced using

Eq. (4), then Eq. (6) will yield the equations of motion (2).

The solution of the restricted problem will be carried out by making use of

a transformation theorem (Reference 1, Chapter 11 aqd Reference 12, pp 237 to

246) which states that ff the Hamiltonian of a system is H (qi' Pi' t) with qi and

Pi canonically conjugate coordinates so that the Hamilton equations

"_ H 7" H

Qi - 5pi ' lai - E'qi (8)

are satisfied and if G

defined by

(qi' Pi' t) is any function, then the variables Qi and Pi

hC bC

Qi - 3P i -Qi (qi' Pi' t), Pi-- _qi_ = Pi(qi' Pi' t) (9)

are canonical variables for a new Hamilmnian

H : H __ (i0)_t

4
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• and t, so thatregarded as a function of Qi' Pl

h i - _,. , p.-
5Q i1

(11)

Now let the Hamiltonian be separated into two terms

H = H 1 (qi' Pi ) + H2 (qi' Pi' t) (12)

with H 1 independent of the time and such that the partial differential equation

O_ '¸ cO._
i i

Hi (qi' 3q----7_) + _t - 0
(13)

possesses a solution for .U 1" It is seen that ff the function _ 1

formation theorem then the Hamilton equations become

cL 1
(H I + H 2 + --d-_--) ,_H o

&
"_i bP. bl D.

1 1

_i
(Hi * H2 + _-_) _ H2

i 5Qi _ Qi

is used in the trans-

(14)

by virtue of the defining Eq. (13) for ¢1 "

that, since H 1 is independent of time,

Further, from Eq. (13), it is evident

¢i = - ht + W(q i , Pi ) (15)

with

_W

Hi (qi'5q---7) - h = 0 (16)

and the momenta P. must be identified with the constants of integration of Eq.1

(16) and h, the separation constant for the time. This is not to be interpreted as

meaning that the P. are constants of the motion for the Hamiltonian H. If this

were so, the right-hand sides of Eq. (14) would have to vanish. What the solution

of Eq. (16) for W does is to specify a function of qi and three new variables Pi"

\
\
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This function may be used to invert Eqs. (9) to obtain qi and Pi in terms of tl_c

new variables Pl and three others Qi" These expressions for qi and Pi may now

be inserted in It.2 for use in Eqs. (1.i) from which Qi and Pi may now be obtained

as functions of time. The solution of the problem associated with H will then be

given by substituting the solutions Qi and Pi of Eqs. (14) in the expression for

qi and Pi"

To actually carry out the inversion of Eqs. (9) it must be noted that the

functional form of u I does not depend on the disturbing function ultimately to

be used. It depends rather on how the identification of the P. is made with the
t

integration constants arising in Eq. (1G). The conventional procedure is to re-

gard tI 1 as the Hamiltonian of a new problem and identify the Pi with the action

variables Ji of this new problem. The action variables are ahvays three inde-

pendent functions of the integration constants and hence are themselves constant

for the problem associated with H I . Once the functional relation between the

, . with the"Pi and the integration constants is determined by identifying the P

action variables Ji of Ill, the conjugate coordinates Qi are defined by Eq. (9).

It will always happen that Pi and Qi so defined are constant if the Hamiltonian

is H I because from Eq. (13)

_i
_i +--EF --)

i bP. =0
1

5C 1
5 * --)

j. = 15" = _ (HI )t =0

I z _Qi

(17)

Once the functional relation between qi and Pi and Qi and Ji is established,

however, the problem associated with H 1 is no longer of interest. The disturbing

function II 2 is expressed in terms of Qi and Ji and the solution of the problem

associated with H is obtained by integrating Eqs. (14).

A slightly different formulation of the problem is obtained if the time inde-

pendent function W of Eq. (15) is used as the generating function of the trans-

formation rather than ¢ 1" The variables w._ conjugate to the action variables



Ji are the angle variables of the problem associated with H I.

between the w. and the Qi are given by1

W _"(_i + h t) _-h

w. - - =Qi+t 5J. -uit + Qi1 _J. b J.
1 1 1

w ith

5h

1 5J.
1

The relations

being functions of the action variables. The perturbation equations for these

variables will be given, according to the transformation theorem, by

(18)

(19)

5 W
5(H 1 +H 2 + 5----_) 3tt: 2

U.
z 5J. 5J. -1

j.

1

1 1

• 3 W.
(tt 1 * H 2 + -_-_-) _H o

5w. _ w.
1 1

(20)

since W is independent of time and H 1 = h depends only on the action variables

and not on the angle variables. The advantage of using the angle variables rather

than the Qi is that it will always be possible to expand H 2 in a multiple Fourier

series in the angle variables and eliminate its explicit dependence on time.

To use the two fixed center problem to solve the restricted problem, the

Hamiltonian (5) for the restricted problem may be separated into terms H 1 and

H 2 as follows:

i 2 Lt 'J

H I = _ p, rl r2 (21)

K H I

H 2 = - _ "R' × P_ (22)

is regarded as a Hamiltonian, the associated Hamilton equations are

il'= - gradp H 1 = _P (23)



and

_RI R.)

= - gradR' HI = - _ 3 _z'---_ = i_' (24)

rI r2

These last equations are just the equations of motion for the two fixed center prob-

lem, so that H I is the Hamiltonizn of the two fixed center problem. Thus the pro-

cedure will be first to find the action and angle variables of the two fixed center

problem and then express the disturbing function

in terms of these variables.

Before procceding with the details of this procedure, it is desirable to make

two further transformation of the coordinates. The first will be to a coordinate

system with the origin at the midpoint of the earth-moon line with the earth and

moon on the x-axis at (e,0,0) and (-c,0,0) respectively. The distance between

the earth and moon is thus 2c. The z-axis will be taken in the direction of _-) .

The only term in the Hamiltonian affected by this transformation is the _ • R'X P

term in wMch R' is measured from the barycenter. From Figure I it is evident

Ve hic le

_R1

Moon 0 Baryeenter Earth

Figure I

8
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1

--,--, O, O) the position vectors of ti:ethat, since the barycenter is at the point (c ,_ .

vehicle relative to the midpoint are related by

!

- _ (26)
R'= _K-ic _ +e,

where i is the unit vector in the x-direction. Thus the disturbing function

becomes

H2 = - O • n'" P =-_.' " R x p +cOZ P-----_' (j • _P) (27)

where j is a unit vector in the y direction.

The second transformation will be from rectang-ular to prolate ellipsoidal

coordinates, in which the Hamilton-aacobi equation for the two fixed center prob-

lem is separable. This transformation may be effected by the generating function

F = eqlq2 Px / _ q22) r 2 _ q22)- + c'7 (ql - I)(i sinq0 P_- C'_ (ql 2 l)(l COS_9 Py z

(28)

with the new coordinates ql' q2' _' PI' P2' and p¢_

Z, Px, %' andPz by

related to the old ones x, y,
0

bF bF

x = _ lax Pl 5 ql

5F _F

Y= 8P P2 =
Y 5 q2

_F 5F

z = 5 P----'z P_ 50

(29)



From the equations for x, y, and z it is seen that

x = cqlq2

9 2

y = e 5"(q1" 1)(1 -q2 ) cos ¢_ (30)

\/(q 1 '> q22)z = c - 1)(1 - sin #_

In this system the surfaces ql = const _ 1 are ellipsoids of revolution about the

x-re\is confoeal about the earth and moon. The limiting surface ql = 1 is the

portion of tl_e x-re\is between the earth and moon, and the ellipsoids increase in

size with increasing ql" 'The surfaces -1 < q2 = const _ 1 are hypcrboloids of

revolution about the x-axis, eonfoeal about the earth and moon. The limiting

s_rfaees q1 -- 1 and q2 = -! are the portions of the x-axis to the right of the

earth and to the left of the moon, respectively. The surface q2 = 0 is the y-z

plane and surfaces corresponding to positive values of q2 are hyperboloids con-

cave towards the earth while those corresponding to negative values of q2 are

concave towards the moon. The angle _ is measured in the y-z plane about the

x-axis and is zero in the portion of the x-y plane for which y > 0. From Eq. (30),

it is easy to show that r 1 and r 2 which appear in the HamiItonian (5) are given

by

r 1 = e (ql - q2)

r2 = c (ql + q2 )

(31)

The equations for PI' P2' P%o are

cql(l-q2 2) cos#o
+

Pl = cq2 Px r

W1(q?_ i) (i- q22)

P2 = cql Px-

9

cq2 (ql- 1) cos

J'(q? - i)(1-q22)

eql(1 _q2) sino
P + P

Z

Y _f(q? - 1) (1 - q22)

2
eqz(ql -1) sing9

p - P

Y \/'(q } - 1) (1 - q22 ) z

(32)

i0
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r 2 9 '.'(q -i)(i cosoP= - +e -qPo e'_(ql -l)(l-q2 ) sinO Py z

(32)

h_verting these equations to obtain Px'

obtains for H 1

P and P
y z in terms of PI' P2 and PO

one

1 p2 > u '
H 1 = _- r I r 2

(ql 2 2 q92) 2i g - i) Pl (i - . P2
=-- + +

2 2 2 2
2c 2 L ql - q2 ql -q2

2

(ql

2

Pgo --L

--i)(1 --q22)

1

c (ql - q2 ) e (ql + q2 )

(33)

and for the disturbing function

r "_/(q}-1)(1 _q2)

H2=¢o L 2 2

ql - q2

PO sin 0

- _/(ql 22_ i)(i -q2 )

- ;_ - U'
cos 0 iPlq 2 -P2ql t/a +---7 (P!ql -P2 q2 ) J'

(34)

Ii _ .f//

(ql q2 + -'_)

This completes the preliminary discussion of the problem. The following sections

contain the solution of the two fixed center problem which will be useful in the sub-

sequent determination of the generating function W from Eq. (16) and the action

and angle variables for the two fixed center problem which will be the w. and J. of1 1

the perturbation Eqs. (19).
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SECTION III - SOLUTION OF TIIE TWO FIXED CENTER PROBLEM

The Hamiltonian for the two fixed center problem, obtained in the last sec-

tion is

2 _ q2 2 21 f ql - 1 2 (1 ) 2 Po
= ¢"

H _ _ 2 2 Pl + 2 2 P2 + 2 _q22)2c ql - q2 ql -q2 (ql -i) (i

I

u

c (ql - q2 ) c (ql +q2 )

(35)

The generating function W(q I, q2' O, Pl' P2' P3 )' which will ultimately be used

to obtain the w. and P. for the perturbation equations is also a very convenient
1 1

device for obtaining a direct solution to the two fixed center problem. Recalling

that for the transformation to be canonical, one must have

_W (36)
P2 = _ q----2

and

Q i = _ . (37)
1

Replacement of PI' P2 and PO by the partials of W with respect to ql' q2' and O,

respectively, in Eq. (35) gives a partial differential equation for W which is sepa-

rable. That is, a solution of the form

exists.

W = W 1 (ql' Pi ) + W2 (q2' Pi ) +W3 (qg, Pi)

It is a fairly simple matter to verify that

(38)

12
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2 2
# dWlN f 5 W N 2

- / .... Plt d ql 5ql I

2 2
f dW2N f _ W N 2

_.. d q2 j = '\ 5 __ J' = P2

2
2c

2
2c

(1 - q22) 2

2 2
f dW3_ / 5 W_ 2 2

\\ do'/) = "\ 50 J = PO = _

R 2 (ql)

S2 (q2) (39)

where

, 2
9 2 2 g+u

R- (ql) = (ql - 1) (hql + c ql - fl) 2 (40)
2c

I 0

? 2 2 J_- _ _"
S" (q2) = (1 - q2 ) (-hq2 + q2 + fl) (41)e 2

2c

In Equations (40) and (41), h is the constant energy of the two fixed center problem

and is to be identified with the constant h of Equation (15) in the previous section.

The separation constants are a and fl. It is easily shown that a is the x-component

of angular momentum about the line of centers. The constant fi has no such simple

interpretation.

At this stage everything necessary for the solution of the two fixed center prob-

lem is available; further discussion of the generating function will be deferred to

the next section.

The Hamilton equations for the two fixed center problem give the time de-

rivatives of ql' q2 and %0 as

2
5 H 1 Pl ql - 1

2 2 2
Q1 5 Pl c ql - q2

2
5 H 1 P2 i - q2

2 2 2
Q2 5 P2 c ql -q2

(42)

13
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_,H Po
0- - 2 2 2 (42)

5po c (ql - 1) (1 -q2 )

Combination of these equations with Equation (39)yields

Q1
j-_- x (ql)
c 2 2

ql -q2

_Io- S s (%2)
- c 2 2 (43)

ql - q2

(ql2 - 1) (1 -q22)

A preferable form for these equations is the following in which a parameter

u is introduced which completes the separation of the variables:

d ql d q2

R S
-du (44)

2 2
dt = c (ql - q2 ) du (45)

do - _ 2 + 2 j du (46)
c_/-2 L ql -1 1 -q2

From Equation (44), which leads to elliptic integrals of the first kind, ql

and q2 turn out to be expressible as elliptic functions of u. Using these expressions

for ql and q2 in Equations (45) and (46), it is then possible to Obtain t and ¢_ as

functions of u. The integration of Equations (45) and (46) involves elliptic integrals

of the second and third kinds.

The form of solution of Equation (44) depends on the nature of the roots of

the quartic expressions R 2 and S2. These roots are uniquely determined by the

14
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three dynamical constants h, eL and ft. It is shown in Reference 6 that if
.)

h < 0, R" must have four real roots, two of which exceed unity and the other

two lie in the interval (+ i). Further, R 2 is positive between the largest roots

and also between the smallest. Since, however, ql must exceed unity, it

follows that ql is constrained between the largest roots. Thus, ifthe roots of
O

R- in order of decreasing magnitude are denoted by rI, r2, r3, r4 it may be

said that

-1 < r4 < r3 < 1 < r 2 < ql < rl (47)

This conclusion may be stated a little differently: the bounds r I and r 2 on ql

represent two ellipsoids (the larger corresponding to rl) which bound the region

in space in which the vehicle may move.

The corresponding results for the quartic S2 are more complicated: none

of the roots exceed unity and at least two lie in the interval (+ i). The other two

may also lie in this interval, may be real and both less than -i, or may be com-

plex. The quartic is positive between the two largest roots and between th= _two

smallest, ff they are real. Since q2 must lie in the interval (± I) it follows that

the orbit is constrained between the two largest roots or between the two smallest

if they also lie in the (+ i) interval. K all four roots of S 2 are in (+ I), "knowledge

of the position of one point of the orbit specifies whether q2 is constrained between

the largest or the smallest roots; transitions from one band to the other cannot
9

occur, since if S" becomes negative, q2 becomes imaginary. The roots of S2

in the interval (+i) correspond to hyperboloids bounding the motion in space.

Summarizing the above results for negative energy, two possibilities for

bounds on the orbit occur. These are shown in Figures II and III where the shaded

areas are regions in which motion may occur.

15



r
b

I
i

I

I

I
I

I

I

I
I

I

' s

s 2 p

-1< r4< r3< 1< r2< ql < r 1

either s 3, s 4 < - 1

-1< s2< q2 < Sl< 1_
or s3, s 4 complex

Figure H

s 2

r 2

l<s 4 < q2 < s3< s2< sl< 1

-i< s4 < s3< s2< q2< Sl< 1

-i< r4< r3< i< r2< ql < r1

Figure Ill
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If one thinks of h, c_ and B which determine all the roots of R 2 and S2, as

being three dynamical specifications of a two fLxed center orbit, it is clear that

any remaining specifications must not violate the bounds on the region in which

the motion can occur. Th'at is, these bounds impose constraints on any further

specifications. Actually, not even h, cy and fl can be arbitrarily selected: they
9

must lead to roots of R- satisfying Equation (47) and roots of .S2 satisfying one

or the other of the following:

(a)

O)

-l_s2_Sl_landeither s3, s4< i or s3, s4 complex

- i g s4 g s3 _ s2 _ sI _: 1

(48)

If the energy is positive, it may be shown that R 2 has one root, say r 1 ex-

ceeding unity and is positive for ql exceeding r 1. The other roots are all less

than 1. The quartie S2 has two roots s 3 < s 2 in the interval (+1), and one on each

side of this interval. It is positive for s 3 < q2 < s2" Thus in this case the motion

must take place in the unbounded region shown in Figure IV.

S

q> rl> 1

i < s3 < q2

Figure IV

<s2<l

17



I

I
I

i

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I

As noted above, ql and q2 are expressible in terms of elliptic functions

of u. The particular elliptic function occurring depends on the nature of the roots.

In all cases, see Reference 6,

Aif (a' i (u + _i )) _-B i

qi = (49)

C i f (a i (u + _i ) ) - 1

The Ai, Bi, e i are constants depending only on the roots and hence on h, _ and

_. The constants 8. depend on h, _ and _ as well as whatever additional spec-
1

ffications are made to select a particular orbit. For ql' the function f is an sn

or dn function according as h is negative or positive. For q2' h < o, f is an

sn or cn function according as all four or only two of the roots are real and if

h > o, f is a dn function. It is evident, of course, that ql and q2 are individually

periodic in the variable u. The periods of ql and q2 are, however, in general

non-commensurable, so that the motion in space of the vehicle will, in general, be

nonperiodic. The quarter periods of ql and q2 are usually denoted by K 1 and K2,

respectively, and it may be shown that these quarter periods depend only on the
9

roots of R- and S2, respectively, and hence only on h, (_ and 8. From the way

in which the _i occur in Equation (49), it is evident that they represent a phase.

In fact, it is assumed in Equation (49) that u = o corresponds to some point on

the orbit, say the initial point, and the _i represent the variation in u required

to get from this point to one of the extreme values of qi - that is, to a point of

tangency with one of the bounding ellipsoids for ql' and with one of the bounding

hyperboloids for q2"

The integration of the equations for time and _ leads in all cases to the

following forms (consult Reference 6)

t = (nI - n2)u + Fl(U ) + F 2(u) (50)

where n I

= (m I +m2) u + G l(u) + G 2(u)

and m I are constants depending on the roots of R 2, and n2

(51)

and m 2 depend

18
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on the roots of S'. For negative h, the functions Fl(U ) and Gl(U ) are

periodic funcLions of u with period 2KI, while F2(u ) and G2(u ) are periodic

with period 2K 2. For positive h, the functions F i and G i become logarithmic.

19



SECTION IV - DETEtL\IINATION OF TIlE GENERATING FUNCTION

The differentialequations for the generating function, Eqs. (39), may be

written

dW 1 _ 5W __v/2 c

d ql 5 ql q12-1

R

dW2 _ 5W _ _/2 c

d q2 5 q2 1 -q22

S (52)

dW3 5 W

do _0

These are ordinary differential equations, and integration again leads to elliptic

intcgTa!s. Before carrying out the integration, however, some discussion of the

limits on the integrals is necessary. Itwill be recalled that the generating function

was to be a function of six variables.

W=W (ql' q2' _9, PI' P2' P3 ) (53)

and the differential equations (52) give only three of the six partial derivatives of

W. Now the dependence of W on ql' q2 and O can be carried by the uppe_ limits of

the integrals resulting from Eqs. (52). These upper limits should be simply ql'

q2' and O, respectively. Recalling further that the momenta Pi are supposed to

be constants, and noting that three independent constants h, a and /5 already are

explicitly in Eq. (52), it is evident that these three constants or some three in-

dependent functions of them must be identified with P.. It is convenient at present1

to identify h, c_ and fl themselves with P. and defer to a later stage in the develop-1

ment any more complicated identification. If this is done, it now becomes obvious

that the lower limits on the integTals must be either functions of h, cz and fl or

absolute constants. This is so first because W is a function only of ql' q2' O

2O
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and the P and, since the intcgTals will be functions of their limits, only theseI'

quantities and absolute constants may be included in the limits. Secondly, the

upper limits have already been taken as ql' q2' and _9,and recalling that the

partials of W with respect to ql' q2 and ¢9must be Pl' P2 and Po' no further

dependence of W on ql' q2 and o can be allowed without modifying the p's from

which the equations (52) for W were obtained in the firstplace. The only remain-

ing problem, then, is to select lower limits which depend only on h, c_and /_. For

the integral for W I, the variable is ql which has bounds on its variation. The

bounds depend on h, _ and fl,and since rI is a bound whether the energy is

positive or negative, itis a satisfactory lower limit. For W 2 the bounds vary

with the particular conditions of the problem. However, for orbits approaching

both Earth and Moon, the bound s2 always occurs, and will be selected as the

lower limit. For W3, the situationis a littledifferent. The variable is O, and

reference to Eq. (43) shows that_9has the sign of _ and is thus monotone. Hence

any absolute constant is acceptable as a lower limit and 0 will be selected. The
0

generating function may now be written:

W (ql' q2' _' h, _, fl)=W 1 (ql' h, _, fl) +W 2(q2, h,_, fl)+W 3(¢p, h, c4 fl)

where W 3

ql .q2

R S d q2
= _/2 c ,! rl 2 d ql + _/2 c _ 2

ql - 1 ,is 2 1-q2

is integrable directly.

+ a _ (54)

It might be remarked at this stage that there is

an essential difference between this generating function and the corresponding

function for the Kepler problem. The upper limits in the integrn'l occurring in

both generating functions may be regarded as the coordinates of a point on the orbit.

In the Kepler problem, the lower limits correspond to the perigee distance for the

radial integral and to zero for the two angle integrals. This may be regarded as a

point on any orbit, since the angles may just be measured from the perigee point.

In the two fixed center problem however, the lower limits rl, s 2 and 0 may be

regarded as a point only on a very special orbit -- namely, one which is simultane-

ously tangent to the ellipsoid r 1 and the hyperboloid s 2, and this tangency must

occur in the x-y plane.
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To complete the canonical transformation generated by W, the Pi will be
identified with h, _ and fl as follows:

I
I

I

I
I

I

P1 = Ph =h

P2 = P_ = fi (55}

P3 = P_ = a

The conjugate coordinates Qi then become

_W c
QI = Qh - _ h -

2
ql ql dql c ,q2

R ,/2 s 2
r 1

2
q2 dq2

S

5W c

Q2 =Qfl = 3 fl - _/_-2

ql dql c q2 dq2
+ , .

r 1 s 2

W ,/2 ff ql dql _ _/2_ q2 dq2I _ =Qc_-_-_ - c .rl (q?-l)R S2 (1-q22)S

(56)

l

l

l

In differentiating the integrals in W _ere are really three terms for each integral:

one is the integral of the derivative of the intcgrand and the other two are obtained

by evaluating the integrand at the limits and multiplying by the derivatives of the

limits. The terms corresponding to the limits vanish, because the upper limits

are not functions of h, c_ and fi, the integrands for the ql and q2 integrals vanish

at the lower limits, and the lower limit of the _ integral is an absolute constant.

I

I

I

It will be noted that all the integrals occurring in Eq. (56) have forms

identical with one or another of those occurring in Eqs. (44), (45) and (46) for

the determination of ql' q2' t and _ as functions of u. The only difference is that

in reference 6, where the integration of Eqs. (44), (45) and (46) is carried out

in all detail, the lower limit on u was taken as zero. Here the lower limits are

roots of R 2 and S2.
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u(rI)

!

I

I

I
I
I

I

I

I
I

I

I

Of the three Qi' Qfl has a relatively simple interpretation if one replaces dql

and dq2 by du in accordance with Eq. (44). Then Qfl becomes

u(q2) ]
- du

u(s 2) (57)

C

= _ (u (rl) -u (s2))

since the upper limits correspond to a point on the orbit and therefore represent

the same value of u. Thus Qfl appears proportional to the variation in u associated

with a transit from tangency with a hyperboloid to tangencywith anellipsold. Since

the orbit is not, in general, periodic this statement does not yet uniquely define

Qfl. To arrive at such a definition, it may be noted that in terms of the canonical

variables Pi and Qi the Hamiltonian becomes

H = h = Pl , (58)

so that the Hamilton equations in these variables are:

•Pl= P2 = P3 =h=_= = 0 (59)

and

therefore

Qa =Q_ = 0, Qh = 1 (60)

Qc_ and Qfl are constants and

Qh =t+ const=t÷ C (61)

The values of h, c_ and fl may be obtained from a set of initial conditions• The

values of Qc_' Q_ and C may be obtained from the initial conditions also, pro-

vided it is agreed that the ql = rl and q2 = s2 are to be associated, say, with the

tangencies to the ellipsoid r 1 and the hyperboloid s 2 closest to the initial point.

Other identifications of ql = rl and q2 = s2 will lead to Q's differing from those

just defined by multiples of the periods K I and K 2.
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i

dq I

or

and

If one applies the same analysis to Qh and Qc_ as used for Q'f_ (replacing

and dq2 by u), the following expressions are obtained:

E j0 .0
c 2 2

Qh = t+ _,--_-- ql du- I q2 du

• u(rl ) v u(s2 )

(62)

I.O 0 1

c 2 2

C = _ ._ ql du - q2 du
u(rl) •u(s2 )

(63)

IlO 0
Q¢_ _ ,/'2el du du

c _u(rl ) 2 2ql -.1 '"u(s2) l-q2
] (64)

I

I

!

I

I

I

I

I

I
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SECTION V - ACTION AND ANGLE VARIABLES

I

!

I

The action and angle variables are conventionally defined only

for conditionally periodic systems, which means that for the two fixed

center problem the development can be made only for h < 0. The

action variables are defined in terms of the generating function W, as

follows :

_ S dq 2i _ dq2 = _/2e _ 2J2 = _q---2 1 - q2

(65)

I

I

I

I

!

I

I

J3 = ;2_" 5._W d_ = 2 7fez
O

where the integral for J1 is taken over a complete cycle of variation

of ql - i.e. from r 1 to r 2 and back to r 1, while that for J2 is over a

complete cycle of J2 from s I to s 2 and back to s 1. These integrals

can, for the most part, be reduced to the forms already encountered

as follows :

r_ Rdql - _/2c d R2 dqlJ1 =J2e ? 2 ._ 2 --g-'
ql - 1 ql - 1

2
2 p :- /_' (_

,/2
J O c 2c 2 (q - 1)

C

(66)

j du
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A complete cycle of variation ql corresponds to a variation in u of

4K 1. Now the first term in this integral has the form of the dependence

of the time on ql' and, referring to Eq. (50) it is seen that the periodic

part F 1 will vanish and hence the contribution of the first term to the

inte_rM is8hnlK 1. Similarly the last term has the form of the ql

part of the O integral, Eq. (51), and will contribute - a • 4m 1 K 1. The

_? term contributes just - _/2 c _ • 4 K 1. The only new integral to evalu-

ate is

?4K 1

ql du
0

This integral, too, turns out to be expressible as a linear term in u

plus a periodic one, so that for the limits given, it contributes a term

,,2 (_t + _t') 21" 4 K 1 where _1 is the coefficient of the linear term. Thus,

finely,

(67)

J1 = 8 h n 1 K 1 + 4,/2 (p+ _') _1 K1 - 4_/2 c t_K 1 - 4_m 1K 1 (68)

In an exactly similar fashion

J2 -8hn 2K 2 + 4 ,Z - K 2 "_" - _ --_ ,z zna_= _ . (]j p') z 2 * 4 ^/2 c. _ *'2 " _ "'2 "'2 '--'

To obtain the _mgle variables conjugate to the action variables, it is

necessary to rec:fll that the original condition imposed on the P. was only
z

that they be const.'mts. Identification of the Pi with h, cz, and fl is only one

possibility; any three independent functions of h, c_, and fl would serve as

well and, in particula_r, it is now desirable to identify P. with J.. Now
1 1

the generating function W is given in Eq. (54) in terms of ql' q2' _9, h,c_,fl,

and r I and s 2. The roots r I and s 2 are, however, functions of h, _ and

3. Now if Eqs. (68) and (69) together with the third of Eqs. (65) be inverted

to express h, m, and 8 in terms of Jl' J2' and J3' it will be possible to

substitute for h, a, and 8 in W to obtain W as a function of ql' q2' O, Jl'

J2' and J3" It should be remarked that the inversion to obtain h, a, and 8
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in terms of Jl' J2 and J3 is not an easy task since the coefficients nl, n 2, 21'

"2' ml' m2 are very complicatcd functions of h, cz and _,. Nevertheless the

procedure is possible in principle and the angle variables w. conjugate to the
1

J's are given by the partial derivatives of the generating function W with re-

spect to the J's:
0

5W
w.- " (70}1 5J.

1

One may obtain expressions for the w. without actually performing the inversion,I

by writing the derivatives of W with respect to Ji in terms of its derivatives with

respect to h, _, and /3:

5W 3W 5h _W 5a 5W _8
W. -- + +

l 5J. 5h 5J. 5a 5J. 5fl 5J.
i I i I

5h 5a
Qh 5J. + Qa 5J. * Q_ 5J.

1 1 1

(71)

from _^_ (56) _ _"_,e .... m_ the variables _-_,,oate to h, a and y Or, recalling

Eq. (62) for Qh'

bh _ + Q_ 5_ (72)w i = (t + C) 5J. + Qfl 5J. 5J---_.
1 1 1

where C, Qa and Qfl are constants.

The derivatives of h, (_ and fl may be expressed in terms of the n's, m's,

2 's and K's occurring in Eqs. (68) and (69) by first obtaining the partials of.the

J's with respect to h, a and fl from Eqs. (65), and then inverting their Jacobian

matrix. The results of this calculation for the Jacobian are

I 4 n 1 K1 -2_f_2 cK 1 -4m122K1 _

/I J1J2J 3 _ -]

J\h _ a j = -4n2 K2 24r2-cK2 4 K2 (73)

0 0
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aad its inverse is

f

J , JiJZJ3 /

i

4 Kl(n I - nO)

_:'_-n2 _''r_!n1

.... 4c_z tn l- n2)
= 4CKl(n l-n 2)

0
0

m I + rnZ

2_7 (nI - nz)

so that, [inally

w 1 - 4 K I inI - "_Z'

_ t+C _

,w 2- 4K l{n I -*_2 J

w 3

1
Z_

(t ÷ C) (m 1 + mz) * z--_-

= Z_ (nI - 2)

I
I

I 2S

are the angle variables.

(74)

(75)

\



SECTJON VI - C().",'CI.['SION

To complete the solution of the restricted problem, it is now necessary to

express the disturbing function H 2 in terms of the action and angle variables.

This is a formidable problem. The disturbing function is given in terms of ql'

q2' _ and their conjugate momenta in Eq. (34). The momenta are given in terms

of ql' q2' _' h, _ and fl by Eqs. (39) so that tt 2 may readily be written in

terms of these variables. Starting from the other end, the action variables J1

and J2 are given in terms of complicated functions of h, c_, and fi [ Eqs. (68)

and (69) ] while J3 is just 2_. _ [ Eqs. (05)" . The angle variables w.1 are

given by Eq. (75) as linear functions of Qh' Qc_' and Q_ with coefficients wt}ich

are functions of h, _, and fl similar to those occurring for Ji" And Qh' Q_ '

and Qfl are related to ql' q2' ¢_' and h, a, and fl by Eqs. (56). Thus, the following

procedure would yield the information necessary to write H 2 (wi, Ji}:

1. Express K 1, K2, ZI' Z2' nl' n2' ml' m2 as functions of

h, a, and ft.

o

6

°

-f

_3
2_

Invert Eqs. (68) and (69) using the results of step 1 to obtain

h(Ji) and fl (Ji).

Express K 1, K2, 21' ;2' nl' n2' ml' m2 which are functions

of h, _ and fl in terms of J..1

Invert Eqs. (75) to obtain Qh = t + c,

of the angle variables w.1 andKl' K2'

and m 2. ,

Use step 1 to obtain Qh' Qa
and J..

1

Qc_ and Q_ as functions

1' 2' nl' n2' ml'

, and Qfl as functions of w i

29
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Invert Eqs. (56) to obtain ql' ¢1'2' and O as functions of

Qh' Qa' Q_' h, a, andS.

In the expressions for ql' q2' and o obtained in step 6

replace Qh' Qc_' and Qo using step 5 and h, c_, and

using step 2 to obtain ql' q')' and O in terms of w.- 1

and J..
1

In the disturbing function tt 2 (ql' q2' O, h, c_, _), re-

place ql' q2' and _ from step 7 and h, if, and 8 from

step 2 to obtain, finally, It 2 (wi, Ji).

Steps 1, 2, and 6 are the difficult ones in this procedure. It is relatively

easy to write K1, K2, 2 1' 2,2, nl' n'2' ml' and m 2 as functions of the roots of

the quartics and two intermediate parameters which are related to the roots of the

quartics by transcendental equations. The roots of the quartics are, of course,

functions of h, a, and /3, but it is not easy to write out these functions explicitly.

Thus, even step 1 is quite difficult, and to perform the inversion required in step

2 in closed form appears nearly impossible.

It should be remarked, however, that, at least for cerLaLn types of orbits,

it should be possible to get fairly good approximations of these steps. For a lunn_"

orbit wnmh starts from the earth, closely circles the moon and returns to the earth,

it may be shown tlmt _2/2e2 is very small. This is so because such an orbit has

very close approaches to the line of centers, and recalling that _ is the angular

momentum about the line of centers, it follows that _ must be small. K c_ were

zero, two of the roots of the quarries would be +1 and the other two are obtained

in terms of h and po by solving quadratics _see Eqs. (40) and (41) _. Now it is

possible to obtain the roots of the quartics for small a in terms of those for zero

c_ in a series of powers of a. Thus for small a, it is easy to obtain fairly simple

approximate expressions for the roots in terms of h, a, and /3. Further, it turns

out that the transcendental equations to be inverted for the intermediate parameters

are very well approximated by just two terms of an expansion. Thus, it is feasible,

for lunar orbits, to obtain a good approximation to steps 1 and 2.
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The complete elliptic integrals

2 ? dql ._

o ql du, o o dq 1

ql -1

and similar ones for q2' have forms very similar to those obtained by Vinti (8) in

his model for the oblate earth. Vinti used oblate spheroidal coordinates for his

model and the close connection between his development and that given in this

report for the two fixed center problem was first pointed out by Pines (9). The

Vinti integrals have recently been evaluated approximately by Izsak (10) using a

technique developed })y Sommerfeld (11' 12) for evaluating certain contour integrals

of functions with branch points. The method is to expand the integrals in terms of

a quadratic function and evaluate the series of resulting integrals about contours

enclosing the roots of the quadratic. The values of the integrals so obtained are

explicitly in terms of the coefficients of the quarries. For the method to be valid,

the expansion must converge over both the original and the final contours. This

condition is satisfied for Izsak's expansion of the Vinti integrals. However, none

of the obvious expansions for the two fixed center integrals converge over the final

contour.

The greatest difficulty in following the procedure for obtaining H 2 fs in step

O. Eqs. (56) relating Qh' Qcz' and Q_ with ql' q2' and (p are transcendental

equations and it is hard to say how well their inversion could be approximated by

some approximation procedure, such as the Lagrange inversion .theorem.

It should be remarked that it would be possible to write H 2 in terms of Qh'

Qa ' Qfi' h, a, and flrather than in terms of w.1 and J.1. This is not done in the

Kepler problem because the relation between the original coordinates and time is

best achieved by a Fourier expansion in the mean anomaly rather than in time.

An expansion in time would involve far more complicated coefficients. Which set

of variables will turn out to be better for the two fixed center problem is hard to

predict at this stage.
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FOREWORD

This document is Part I of the Second Semiannual Report prepared by

Republic Aviation Corporation under NASA Contract No. NAS 8-2605. The

report will appear in slightly different format in "Progress Report No. 3 On

Studies In The Fields Of Space Flight And Guidance Theory, " issued by the

Aeroballistics Division of Marshall Space Flight Center.

This report was prepared by Dr. Mary Payne of the Applied Mathematics

Section of Republic's Research and Development Center. The author wishes to

express her appreciation for many helpful discussions with Dr. George Nomicos,

Chief of Applied Mathematics, and Mr. Maxwell Eichenwald during the course

of this investigation, and to Mr. Jack Richman for assistance in programming.

iii



I

I

I

I
I

I
i

I

!
I

I

I
I

I

I
I

I

I

I

CONTENTS

NOTATIONS

SUMMARY

INTRODUCTION

PRELIMINARY CONSIDERATIONS

RELA'FION BETWEEN TIlE TWO-FIXED CENTER

PROBLEM AND THE RESTRICTED PROBLEM

DETERMINATION OF a AND y

APPLICATION OF THE METHOD

PRELIMINARY NUMERICAL RESULTS

REFERENCES

iv

Page

V

1

1

3

7

12

15

18

19



l

I
i

I

l

I-

I

l
I
I

I

I
l

I
I

I
I

I

I

A

A

_E

E

S 4'

AE

J

Z_

J1

J2

Z_k

J

L

L

L

L

NOTATIONS

= origin of rotating coordinate system

= position vector from barycenter to center of the
rotating system

= the position vector of A relative to the earth

= position vector of the earth relative to the bary-
center at t = 0

= position vector of the earth relative the bary-

center, but rotated through an angle oJr

6

= E - E

= Hamiltonian (Jacobi integral) for the restricted
problem

= difference between the restricted Hamiltonian
and the two-fixed-center Hamiltonian

= the part of J independent of (_, /3, and ),

= the part of Jthat is afunctionofc_, fi, and

= Hamiltonian equivalent to J* but written in terms
of two-fixed-center coordinates and momenta

= time dependent part of J*

= Hamiltonian of two-fixed-center problem

= length of position vector from earth to moon

= position vector from earth to moon

= position vector of the moon relative to the earth

in the rotating system

= velocity of moon with respect to the earth (_ X L_.)

= _ X L in the rotating system

= momentum canonically conjugate to R A
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II

I__2

iia

a_-1

_2

_E

R
---rn

--I

R a

R_I

r 1

r 2

T

t

O_

t3

?,

0

/s

I

#

= momentum canonically conjugate to R__A

= position vector relative to a point fixed in inertial
space e.g. baryeenter

= position vector relative to the earth

= position vector relative to the moon

= position vector relative to A in the rotating system

= position vector relative to the earth in the rotating
system

= position vector relative to the moon in the rotating
system

= position vector from barycenter to earth

= position vector from barycenter to moon

= position vector relative to A in the rotating system
for the two-fixed-center problem

= position vector relative to point at A

= length of position vector relative to earth

= length of position vector relativc to moon

= a specific period of time

= time variable

= constant coefficient of L in composition of A

= constant coefficient of i-_ in composition of A

= constant coefficient of i_ in composition of A

= the angle of rotation of the coordinate system
about the barycenter after a time T

= gravitational constant of the earth

= gravitational constant of the moon

= angular velocity vector of the moon about the earth
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gradV

the magnitude of angular velocity _-,

gradient with respect to the componentsof V taken
as coordinates

Subscripts

B

0

= vector relative to the barycenter

= initial value

Superscript

dot over quantity =

2 dots over quantity

first total time derivative

= second total time derivative
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REPUBLIC AVIATIO_N CORPORATION

Farminsdale, L.I., New York

Approximation of zhe Restriczed Problem

• by the Two-FLxed Center Problem

By Mary Payne

#

t _ SU MMA-RY

In this report, a perturbation theory of the t_vo-fkxed-center problem

leading to an approximation for the restrieted-tlu'ee-body problem is developed•
:It makes use of a generalization of d_e method developed at MSFC by Schulz-
Arenstorff, Davidson, and Sperli:_.Z. (1) The derivations are carried out in a
coordinate system rotating about an accelerated origin, and the generalization
consists of the selection of this origh_ in such a way as to minimize the effects

of the non-integrable terms in the perturbation equations. The results of some
numerical calculations are presenZed.

INTRODUCTION

The equations of motion for a v_hicle moving in the gravitational fields
of the earth and moon are:

• . _ _a2RI

R = -;_----_ - _ ----_
. rI r2 .

i

(i)
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where R 1, _R2, and R are the position vectors of the vehicle referred to the

earth, the moon, and a point fixed in inertial space, respectively. Lower Cas_
letters denote the magnitude of the corresponding vectors. In this report it
will be assumed that the earth m:d moon are moving in circles, under their

mutual gravitational attraction, about their common center of mass. This prob-
lem is the restricted three-body ?roblem, and the fixed point may be taken to
be the center of mass of _i-e earth a:.c the moon. An approximation to the solu-
tion of the restricted problem will be sought it: _erms oi the lmown solution(3) to
the Eulcr problem of rive fixed ce::_ers of _a\..__on. Tl_e method will, in many

respects, follow closely that dcvc!opcd by Schulz-Arcnstorff, Davidson, and
Sperling. (1) In tneir procedure, :he ,)roble:u is _ri_sformed _o a coordinate

system rotating about the center of mass. In this rotating system, the Euler
problem is taken as the basis of a perturbation theory. Using the initial con-
ditions of the Euler problem as a set of canonical variables, it is shown that(2)

and

R0 = _- grad_P0 J*

o

--P0 = -gradRoJ,,

(2)

where R 0 is the initial position vector in the rotating system, -P0 is the momen-

tum vector conjugate to_R 0, and J* is the difference between the Hamiltonian for

the restricted problem (Jacobi integral) and that for the Euler problem, and is
given by

J* = Ro x I' o+z**. (3)

The solution of _he restricted problem is gh, en in terms of an osculating two-

fixed center problem x_dth varying i_xitial conditions. If J** were zero, the

equations for R 0 and P0 could be integrated directly. In the Schulz-Arenstorff

theory, J** does not vanish and, in fact, contributes appreciably to the vari-

ation of R 0 and --P0 if the time interval over which fl_e integration extends is too

large, or if either the earth or the moon are approached closely by the vehicle
' during this time interval.

It is the purpose of _his report to show that the cffec_ of J** can be reduced
by selecting an origin for the rotating system or.her ".han the ccn_er of mass of

the earth and moon. In the course of this development the details of the Schulz-

Arenstorff method will be given, and the coordi:mtes for a center of rotation will
be determined so that j,,s and its first time derivative vanish initially.

2
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PRELIML\ARY C ONSIDEIL%TIONS

Since the two-fixed center problem will be used as the basis of a pertur-

bation theory, it is necessary that the earth and the moon be fixed in the z:o-
%ating coordinate system. This implies that ti',e origin of this rotating system
must be fixed relative to the carE: and the moon. The most general of such

points will rotate about the baryce:_er with the qugular velocity of the earth and
the moon. The radius vector from the baryccnter to the origin of the rotating
system can be ex_pressed as

A = c_L - 9C) _- L_"_ _ ._.-- 7 , (4)

where L "and L are ti_e position and velocity vectors, respectively, of the moon
relative--to the-earth in a non-rotating coordinate system, and _ is the w_gular

velocity of the moon abou_ the earth. From the definition of L and L it is ap-

parent that both vectors are l_o\vn ftmctions of time. Furthermore, L a_d L

are constantvectors in the rotating system and _ iS constant in both the
inertial frame and the rotating system. Thus, the requirement that the poJa_t.
A be fixed relative to the earth and the moon implies that _, ,3, and 7 are

numerical constants. The constan_ 2 may be chosen arbitrarily, for the point
A is used to determine an axis of rotation oriented in the _ direction, and all

points with the same _ and 7 will lie on the same axis independently of B. Thus,
may be taken as zero without loss of generality, and it will no longer appear

in the formulation. Referring to Figure 1, it is seen that R, R l, R 2, L, and

RA, the position vector of the vehicle relative to A, satisfy the following re-

lations:

11 /

R E =---=--,_+/_ _L (5)

_, L (6)
--R_.I= /_+ u --

--RA= _1 +--aE-A-= --_1- /_÷ ,__L - _ (S)"

-_A; % +-R_,_._.=_% (_- -" 5 ,.-_ - _.__

_a = A_+R_A =___ ÷ _L + _L

- _, _r', (9)

(io)
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First, it is necessary to eliminate R__from Eq. (1) and obtain the equations of

motion in terms of 1RA, R 1, and R2. To do this, one may differentiate Eq. (10)

t_vice with respect to time:

(11)

Now, the condition t]mt the earth and moon move in Circles under their mutual
gravitational attraction means that

L = xe

and

"" L

L = _ x L = -(g-_ #') _ . (12)

Differentiation of Eq. (12) (with 2 = 0, as __Lhas constant magnitude), enables

us to write Eq. (ii) as

R = IRA - _ Lei L + 7L ' (13)

and the equations of mo_ion (1) become

"" -R1 -Re (14)
RA = - kL 3 k_' "-"_ + (_L *

rI r2 £3 -- _ •

I

It should be noted that, at this stage, the coordir.ate system associated with A
is an accelerated system since the origin has uniform circular motion. It is,
however, not a rotating system yet - that is, the coordinate axes remain parallel

to the inertial axes at _e barycemcr.

The next step is to transform to rotating coordinates about A. The vectors

in this system will be denomd by bars, and the equations of motion become

.7. ._

_A I ' ---=-" -- -- -C/x x=-U 3 U 3 * ,3 --
r 1 r 2

.(15)

It should be noted that, in this rotating coordinate system, the earth and the moon

are fixed, with position vector _ of the moon relative to the earth as a constant

vector. The vector L does not represent the velocity of the moon (which is zero),

4
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but is a vector nmtually perpendicular to L and _Q, and satisfying Eq. (16) with
bars .over the vectors. As the rotating system has angular velocity ,o, it follows

of course, that .Q__and .Q are identical.

A constant of motion for the problem in the rotating system may now be

obtained by dotting Eq. (15) with _RA and noting that the earth and the moon are
fixed in this system, so that

_RA = a 1 =_a._ . :(16)

• Thus,

"7"

as _.L and L

d i ,._g +_=_ +
dt kr I r2 _3 -- 7RA'--

Denoting the constant of motion by J:are constant vectors.

.2 i I -- • 2

- -._ r i r 2 :3" _A" -- " ' A'--# -_- X_A
,5

It may now be shown that, ff the Vector

(19)

(is)

is regarded as the momentum conjugate to _RA, the integral J of the motion be-.2.-
comes the Hamiltonian. To prove this, substitute for R A, using.Eq. (19), in
Eq. (18):

j = _ (_PA -p. xfiA) 2

Ii , : +-_*:-_

rI r2 23 - _ _

' u_z__r - - - L_.
r 2 --

0

(20)



If I_A and ---PAare conjugate vectors, Hamilton's equations,

-RA= _ad_pA_ J = -PA- _n _ A '

and

• / ,, [,"_

_A= - grad__AJ=grads,.\ _ ÷r2

(21)

.c ,3 -- --

mustbe satisfied. It is evident that Eq. (21) is identical with Eq. (19), defining

the relation bet_veen velocity _A ana the momentum -PA conjugate to 5A. Now,

it will be shown that Eq. (22) reduces to the equations of motion (15) in the ro-

taring system. Fil'st,

grad5 A rlu _ _r12 gradR A_ r 1 . (23)

But,

hence,

2 = _1 51 " (24)r 1 • ,

2 r 1 grad_ r 1 = grad_A r12
--A --

<-%_-G "__)2
= grad_A /

1_ _ _ 2 _

._ = 251 ,
• = _,_ - _(i-Gj

so that, finally,

and

gradl_A JL- =
rl. rl3

(25)

(26)

o ' '
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Similarly, .

"-R2
grad_ A i& = 3

- r 2 r 2

so that Eq. (22) ma'y be written as

• . 51 ' ' - ,

r 1 r2 ,_

Now, from Eq. (19),

•(.27)

(28)

_A = -RA + _ x _RA , (29)

and use of this relation for -PA.and Eq. (19) for -PA in Eq. (2S) yields

•_. _..

_RA +_Dx_R A = 3 3
rI r2

I

.3 \aL * _L.!

Finally, if the Q_ x _RA on the left is transposed to ti_e right hand side of Eq.

(30), it becomes identical with the equations of motion (15) in the rotating sys-
tem.

RELATION BETWEEN THE IRVO-FLXED CENTER PROBLEM

AND THE RESTRICTED PROBLEM

A Hamiltonian, J, has now been obtained for the restricted problem in a

rotating coordinate system with the origin at A:

r I r2 --

w

x--PA - £3 -- '
(31)

with
m

o

X = _E +)'L (32)

7
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referred to the barycenter of earth and moon,'and

...L"

= -aA + x • . (33)

The development so far differs slightly from that of Schulz-Arenstorff, Davidson,

.and Sperling (1) in two respects: it has been carried out in three dimensions in-

stead of two, and the center of the rotating coordi:mm system is at A instead of
the barycenter. Following their development, a solution of Eq. (31) in terms of
the solution of the uvo-fixed center proble-u is now sought. For the two-fixed

center problem, the Hamiltonian is given by:

jI = " 12 U t2 I

_ _A r I r2 , (34)

and the Hamilton equations are

' pA'
_RA = grad___pA I J' =

and

• 2A = - gradR A_ J' = - '_ 3 3 "
r I r 2

Denoting the solution of the two-fixed center problem by primes and that for the
restricted problem without prhnes, the solution sought is to have the form

'and (36)

P (_RO,_PO. t" = P' (R/' 0 (t), _0 (t), t "h

Thus, the problem is reduced to finding the time dependence of the initial con-
ditions in the solution of the t_vo-fixed center problem that provide the solution

of the restricted problem in the same functional form as that of the two-fixed
center solution.

The theorem, mentioned Lu the introduction, on the equations determining
the time variation of the initial conditions will now be given a precise statement.

,.



|

@

)

Theorem: If R (_R0, PC' t) and P _0' P0, t) constitute

the solution of a problem with Hamlhonian J _, P)while
R t
--GO' -P0' t) and -P' (_0' -P0' t) constitute the solution

of a problem with Hamiltonian J' (R ', P') with

_RG0, _0' 0) = __' (_R0, _, o) = -_0

and "

-P_-o' -Po' t) = -P' (R0' -PO' o) = -PO
(37)

)

then Eqs. (36) are satisfied with _R0(t ) and P0(t), de-
termhmd by the equations

_R0(t) = grad_P0 J_ _-0' Z0' t )

and (3S)

P0(t) = _ gra%0

whe re

J* C0,-P.0' t),

Y_', _P') =J _, __P') -J'_',P')=J*G0,_P0 :t)

Wherever R 0 and P0 occur on the right hand side as a re-

sult of the gradient operations, they are to be replaced by

_R0(t ) and P0(t), respectively.

This theorem has been proven byArenstorf (2)

now be applied.
in an unpublished note and will

(39)

To obtain the differential equations for R_o(t ) and __Po(t), J" must be

written in terms of _RA and --PA' associated with the two-fixed outer problem.
That is,

= -, pA ) - J'Y J - =P/)

_p, z
- . ;3 - '

J

where J -' p'
_A' -A ) is obtained from Eq. (31)by replacing _RA and PA by the

! --I

corresponding primed quantities, and J _A' -P'A) is given by Eq. (34).

Itis now necessary to obtain J* by expressing J in terms of the initial

conditions of the two-fLxed center problem. This is very difficultto do ex-
actly,as the solution(_;)ofthe two-fLxed center problem is given in terms of

ellipticfunctions with the initialconditions entering not only in coefficients of

(40)

9
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these functions but also in their mo£uli.

fixed center problem is a transcendental fu:'.ction of the initL%l conditions.

approximate solution is, however, obtainable by expanding J" as a power
series in time:

O

"- _ t-

J =J (0) +J (0) t + J (0) .) _ ...

• t 2
= J* CO)+J *(o)t _-j'_ (o) -y- ....

Therefore, the solution of the two-

An

(41)

Using Eq. (40), the firs: time derivative of J is

z -_. x "--""-RA _A _3= "-" _i -Pi-'_' -' _" "-_' -. _i _-(a_nk _+_ "L). (42)

Now, Eq. (42)contains time derivatives of _-A and -PA' which may be

eliminated by means of the Hamilton equations (35) for the two-fixed

center problem:

.L

J= - _ PSi

,,_._. ¢_.._ .-
, - U +U'p, • _+T_L

r I r 2

C43) •

The first term in this equation vanishes. Evaluation of J and J at t=0 yields

- - , __ -, z. _=T).
JCO) J'CO) =-_._R_o ×_PA0 :3 -RA0"( _ _ (44)

and

_(o) = a*(o) = - n .RA0

/ I--[

-_-1o _ -R2o u+_' ,

rlO 0

Setting

(45)

:"--. --/ ptJ1 - "q " -RA0x- -AO (461

..and

so that

J2 =--- #__,

U+U' -- F -, U _R20
' -' " CcLE_7_L) +t:_q'RA0X( _ : _)

23 RA0 - ___ rl 0 r20

.3 _._o -* . "'"
A,

(47)

J* = J1 + J2 "

10
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Application of the Arenstorf theorem, now yields

'o

' _ J_ =-_x ' J2 '(48)RA0-' = +gradp_. 0 - RA0 + grad-P'A0-

!

::A0 -A0 "

as the differentialequations for the variation of t1:¢.two-fLxed center initialcon-

ditions, which must be included h:tke two-fLxed center solution h_ order that it

may become the solution of the restricted problem.

If J._ were zero, Eqs. (48) and (49) wouki integrate hnmediately. They

would sini_)ly say that RA0 ar.d _40 rotate c'.zckwise with angular velocity _ .

That is, in the rotating system the solution of tke restricted problem at time

T would be given by the solution of the two-fLx_.dcenter problem at thne T,

with initialconditions obtained f_.:omthose of the restricted problem by a

clockwise rotation throu_ii_ T about the point A. For T=0, the restricted
and two-fkxed center problems have the same initialconditions and, hence,

have exactly the same solution.

Actually, of course, J2 does not vanish, and it is here that the selection

of the point A el{tots. Every term of J2 involves either R-A0 or PA0' which

depend on the selection of the point A, so tlmt this point should be selected so

as to minimize the contribution of J2 to the variation of the initial conditions..

This could be done in various ways. Inasmuch as the position of the point A

depends on the two parameters c: and _, it is evident that only two conditions
can be imposed on the selectiori of A. Several such conditions suggest them-
selves immediately:

(1) Determine a and T so that in J2 the constant term and the

coefficient of _ vanish for the initial values of RA0 and PA0"

(2) Determiffe _ and _ so that J2 vanish for t=0, with initial
/

values of RA0 and_.PA0, and also vanish at t=T, with the

rotated values of _R_0 and --A0P' determined by J1 at time T.

(3) Determine Cz and T so that the square of J2 is minimized

.. over the time interval 0 to T, using either the initial values

of R_,0 and PA0 or their time dependent values determined

by J1 over the interval.

The first method has the disadvantage that the validity of the approximation
would deterioraze with time, and there is no obvious way of estimating the
duration of validity. The ofi_er t_vo methods have the disadvantage that, ff the
time interval specified is too long, the approximation would not be valid, even
initially, and again, a criterion for "too l_ng" is missing. It was, therefore,

decided to try the first method, which would give some insight into the duration
of validity, and might very well produce results of practical value•

11
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DETERMINA.TION OF czAND 7

0'

In accordance with the conclusion of the last section, _ and 7 are to be de-

.te_mined by the equations

"-2-

_g . (_ ._, _.L)=0 (50)
AO

and

J

6 M

_ x,/.uRIO -132°"_ u- u' (=_ -.- - ,' ' • Z_L)=O, (51)

rl0 r20

sothat the first two terms in the power series expansion of J_ in Eq. (47)vanish.

The primes have been omitted in Eqs. (50)and (51)because tee initialvalues of
l

_i0 and P---A0"regarded as variable parameters l'orthe restricted problem, are
the initialvalues of the restricted problem by the Arenstorf theorem. (2) Now,
m

_A0 and PA0 depend on the selection of the point A, so that, for the determination

of o_and 7 from Eqs. (50) and (5i), they should be replaced by the position and
momentum of the vehicle relative to some point independent of A. A particularly

compact form is obtained for the equations of cx and 7 by replacing PA0 by -PI0

and _A0 by R-10 or R_-20, as follows. First, since from Eq. (19)

PA0 = -RA0 + _ x _RA0 , (52)

for any point A fixed relative to earth and moon, it follows that

'_L.

_1o = -Rio.+Q x _Rio . . (5_)

Therefore, since in the rotating system the velocity of the vehicle relative to the

earth is the same as that relative to A (both are fixed points in the rotating system),

Q

= _ +_x (- -_El0 )PAO =zo - -RA0

= --PlO-n x (i_ " U' -- )

12
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on making use of Eqs. (8) and (12). Thus, the'third term of F.q. (51) will be

proportional to

-PAO " (_ _L+__L ) = -P_o.(__L+7_L )_7 i_:-,

Where the terms in c_y have cancled out.

Again using Eq. (8), the first term of Eq. (51) will involve

m J

_ - p_z___'Z j '=--_o"L(_+__ L -r _3-

and the.second term Will be proportional to

"Q " RA0 xR20 =-_---Q × (_ _t :p-r') L +),_ _ • _R20

_20"" .u _)L= - _ _=// --

so that Eq. (51)may now be written as follows:

J __ --

-7 u*u Lt ,
23 --

/./ I- u I . -- ._
3 L-('_ +7-_-_) -R_0 - +7-

rl 0 , .
-";F'_%.o.sj

U' _ _ . - --

* ---5 L- (_ -_+--V__)-_2o _L _--/ -_'_0 •_Z
r20

-- - , • (u L +7L ) -?723 _-Pio - -

or, collecting terms in _ and 7:

= 0

(55)

'(56)

(57)

(58)

13
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-_L_RIO L ( _ "_"'• -- _---'-5) = 3
rl0 r20

-Plo" L j

• .+,,' - _I0" _
o "'z U .7

ri0

."-la'
-if20 _ I

a ---P1o"- J
J"o0

_ u,.___/L - . _ 1#+'#_ _nzo _L ( _)
rl0 r2 0

(58)

=0

where use has been made of the fact that

5Io'_ :_2o _ (59)

Using Eq. (S)once more, one obtains for Eq. (50):

--J

-Rzo - _;"i_,_+_L .3
,

- -- '_' ' 7)22 2 _2
=RI0 • (c__Z-_TL_) -o_(. cz .÷_ -9_ • (60)

222 _ . - _i
:-_ _ _ (-_zo b ' -_:-_ _:'{_o"/.):o---r _-) _

If Eqs. (5S) and (60) are solved for c and y , a point A is determined so that the
following procedure should give an appro.ximation to the restricted problem valid
for a time interval whose length depends on the size of J* and the rate of variation'

of --{0 and P10" The procedure is carried out in the rotating system as follows:

Modify the initial conditions of the restricted problem by a
clocl_vise rotation through ¢_ T about the point A, and solve
the two-ffixed center problem with these modified initial

conditions. Then, _I(T) and _I(T)' given by the two-

fLxed center problem, should match _A(T) given by the

restricted problem with unmodified Luitial couditions.

14



APPLICA@IONOF THE METHOD

In order to carry out a nu,nerical test of the method, use was made of the
Republic interplanetary trajec'tory program. The i::put for this program requires
that initial conditions be gi\e3_in a coordinate _y_t_m with its origin at the earth
and axes with fixed directions in spuce. The z-axis points towards the pole star,
the x-axis points to the first poi-,t of Aries, and t!:e y-taxis is selected so that the

syst.em is orthogonai and rigi_t-lmnded. The o,_put includes coordinates and ve-

locities of the vehicle in this same system. A:_ c,l)tion is available which fixes the
moon at any desired point on its orbit and computes a uvo-fixed center problem
for this fixed position of ti_e moon and given initial conditions. A set of initial

conditions is available which yields a lunar trajectory (referred to, henceforth,
as theloasecase} with a moving moon, _a_tn. 5 near tl-e earth, closely circling

the moon and returning to the earth. Thus, to test the application one could
modify the coordinates and velocities at various points on this base case m_dcom-
.puts a two-fixed center'problem from tits modified conditions to obtain a com-
parison, which should indicate the time intervals over which the approximation

fs useful for various portions of the trajectory.

The modification of the initial conditioas derived in the preceding sections
was carried out in a rotating system, and it is _-ow necessary.to transform this

modification,for use in the coordinate system of the interplm-etary program. To
see how this may be done, suppose for the moment that the point A is at the bury-
center, i.e., a and 7 are both zero,, and that the fixed and rotating systems are
coincident at t ; 0. It is evident, in this case, that the two-fixed center orbit
obtained from the ini_iat conditions, modified by a clockavise rotation through an
angle @ about the barycenter, is exactly the same relative to the earth and moon
as if the initial conditions imd been umnodified and the earth and moon had been

rotated counterclockuvise through _ about the barycenter. Now, the angle O is
CoT, where T is the time at which the comparison is to be made. Hence, if the
earth, the moon, and the two-fLxed center orbit, corresponding to the modified

initial conditions, is rigzdly rotated countercloclavise through ac T, the earth and
moon will coincide with their positions at time T in the fixed system, and the

point corresponding to time T on the two-fixed center orbit is the one to be com-
pared with the restricted problem carried out in the fLxed system. Moreover,
this counterclockuvise rotation just transforms the two-fixed center problem,
with modified initial conditions and earth and moon in initial position, into that
with unmodified initial conditions and earth and moon in their T positions. There-

fore, for _ and "both zero, the comparison can be made, using the interplan-
etary program by fixing the moon in its T posit.ion and referring the unmddffied
initial conditions to the coordinate system centered at the earth at time T. This

is indicated in Fig. 2, where the unprimed initial conditions are referred to the
eart[_ st t = 0, and the primed initial conditions refer to the earth st t = T. The
initial conditions are fixed.

P
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A comment on the relation between the momentum vector 1:_, conjugate td

_-.B, and the _;elocity vector P-'B' where B is used to indicate that the barycenter is
the orion of the rotating system, in now in order• Recalling the definition of PA

in Eq. (19), it follows that

and hence P._.__is simply the velocity vector in the fixed syst.cm with its components
referred to the insmntar.eous rotating axes• Since it has been assumed that the

fixed and "" "'_', .ro,.u..o svstem_ are coinciden_ at t = 0, it follows that

|

|

a

P-B = _B ' (62)
O O

where RB is in the fixed system (recall that bars deno_ rotating system)• At

time T, if the P_.B vector is rotated tM-ough _ T counterclockwise, it will become

the 1_B vector. But this is just the transformation that has been used to translate
the E_o-fixed center approximation from the rotating to the fixed system.

Thus, if the barycenter is the orioin of the rotating system (i.e,, o_ = 7 = 0),

the prescription for the approximation is the following:

o (I) Let
/

- =_ (L_(T)-L(0))____E= Z E _

be the displacement of the earth in time T.
,

• (2) Set
/

g'_0 = g_0 - _--£_--_0 + ' _ L__
and

• ,F

R'_0 = _0'
since a translation of the orig'in will not affect the velocity.

(3)
the earth.

(63)

(64)

(65)

Fix the moon at _.L (T), that is in its position at time T relative to

I

P

0

0

°p

(4) Solve the _t_o-fixed center problem with the moon (fixed at L (T))
and initial conditioas R10 and l_10 to obtain an approximation at time T_'o the

restricted problem wi_ mitial-_ondi_ons RI0 and R_j.0 and moon initially at L_.(0).

The analysis for a system rotating about any point other than the bary-
center is carried out in a similar way, but the algebra is more complicated.

The origin of the rotating system is to be the point A, defined by Eq. (4), with
a and y determined from Eqs. (5S) and (60).

In Fig. 3, the vector A and the ori_nal and modified initial conditions are

shown in the rotating system.

o'
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.Again, it is seen that the _vo-fixed cen_r p_'o_,e.u,'' , with primed initial con-

ditions and unprimed positions of e_.r:h and moon, is related to that with unprimed
initial conditions and primed posit!on3 of earC', urd moon by a rigid rotatio,) which
is the rotation part of the tra:_sfo,.u._.tic: _. c_.r_.':,'i:',_ the rotating system into the fixed

system, h must be rememSered, ho,,_c\er,t-_.atu::ii:-ethe barycenter B', which

may be regarded as a fixed inertial point, A is an acco!erau_d point in inertial
space, so that more than a rotation is" required to transform back from fl_e rotating

system to the fixed system. In Fig. 4, the system rotating about A is shown at
t= 0 and t=T.

It is now easy to see that the translation required to complete the U'ansforma-
tion to axes moving v.'ith A, but ",_ A'.x__... fixed directions, is a translation from A to
Actually, this translation need not be considered further because itis desired to
find modification in the initial conditions relative to the earth rather than relative

tO A.

Referring again to Fig. 3, itis seen that the primed positions of the earth

and the moon define a line parallel to that of the earth and moon at time T in the

fLxed system. Thus, just as in the barycenter case,

l

R_io= o -
and , (66)

p' =p.
b

To obtain _ one may note that _--__EEis obtained by a rotation of E through u: T
about A and that this ,____E_.Eis just the negative of a rotation of. A through co T about
E. The vector ; relative to E, is given by./2.,

l ].l .

4-E =A+ _--E-- L=(_ --_ ;_,_ ;.__,) L_+-/ L__, (67)

and the chance in A E induced by a rotation .of A E through _c T about E is given
by

A-.AE = (a._) (L (T) - L (0) } + T(L (T) - L(0)) (68)
_+# ....

so that finally,

• R_ o

= - A___EE,

=RI0+ (a_--_,) (L(T) - L (0)) +7 (_(T) - L (0)). (69)
_+_ - -

As before P, which may now be regarded as RI0 in the fixed system, is unmod-
ified. Th_ - " " '- "two-fixed center problem, wlth R_I0 and R_I0 as initial conditions with

the moon fixed at L (T) relative to the earth, should produce, at time T,. a good
approximation to t_e restricted p_"oolem, with initial condition RI0 and R_ and
the moon initially at L__(0), provided T is small enough so that the second and

higher order time derivatives of J2 produce a negli_ble effect.

17
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PRE LIMIXARY ._qJ._Y£RiCAL RESULTS

The parameters cz and Y have been determined for a lunar _rbit with the"

following initial conditions:

xlO =

YlO =

zlO =

• Xl0 =

YlO =

zlO =

-37103. 635 '"'"

_-56452. 667 km

-30844. 317 km

-0. 65536162 km/sec

-2.7369109 km/sec

-1. 0459904 kin/see

The distance of the vehicle from the earth is about 11.6 earth radii, and it has
a speed of about 3 km/sec. For these conditions, the values of a and y are the

following:

cz = -6.2611792x 10 -4

y = 0.25110731 hr

The two-f fixed-center calculation with the initial conditions modified for

evaluation of the position and velocity of the.vehicle at 23, 33, and 53 hours was
compared wid_ the base orbit at 23, 33, and 53 hours respectively. The devi-

ations in position of the rwo-fLxed-center calcalation from the base ease are shown
in the table below. Included in the same table are the deviations of the corres-

ponding Kepler problem from the base case.

Dist. from

Time Earth Deviation Kepler

Two-F txed ,

-Center

23 hr 35.3 ER A x 144 km 17 0 km

A y 132 km 200 km
A z , 33 km 10 km

33 hr 42.'1 ER

53 hr 52.7 ER

•_ x ' 262 km 430 km

A y 155km 250 km
A z 142 km 30 km

A x 1300km 1970 l_n

A y 10s0km Ii00 km
A z 993 km 110 km

18•
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Itcan be seen from the table tl_.tthe deviations resultir._from the use of the

• _'.u.,_. d_n tho_e of the Kepler problem.t_vo-ftxed-center problem are sli_;l:t!y _ ....
"It is desirable to obtain n:ucl_sma!L,r devlatlons d_.m these, but, because _ and

used are determined ozCy fro:r,t!:einitialconditioz_._,one could hardly expect

better results. TLe use of one of the more sopl_!stica;edmethods for determining

5' and 7, outlined earlier, should lead to cons iccrable improvement. As noted

earlier, these methods would render o and 7 dependent on time as well as on the
initial conditions. The smallness of the'deviations (all are under _%) indicates

'that times of at least to 60 hours could be used without prejudicing the validity of

the approximation.
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Studies In The Fields Of Space Flight And Guidance Theory, " issued by the

Aeroballistics Division of Marshall Space Flight Center.

This report was prepared by Mr. Jack Richman of the Applied Mathematics

Section of Republic's Research and Development Center. The author wishes to
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S. Pines, former Chief of the Applied Mathematics Section, and to Mr. T. C.

Fang of the Applied Mathematics Section. The author would also like to express
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DEFLNITION OF SYMBOLS

Vehicle position vector

Distance to vehicle

Velocity vector of vehicle

Speed of vehicle

Perturbation displacement vector
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Mass parameter

Time

Time at which the natural end point is reached

Magnitude of thrust

Direction of thrust

Mass of vehicle

Lagrange multipliers or adjoint variables

Semi major axis

Mean motion

R.. l_.
--1 --1

Incremental eccentric anomaly

,f2,f3, f4 Functions of S defined by Eqs. (48)

Adjoint variables defined by Eq. (18)

State variables defined by Eq. (18)

Residual vector defined by Eq. (19) 0
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REPUBLIC AVIATION COIIPOI_ATION
Farmingdale, L. I., New York

TWO-POINT BOUNDARY-VALUEPROBLEM
OF THE CALCULUSOF VARIATION

FOROPTIMUM ORBITS

By Jack Richman

SUMMARY

This report contains a description for the solution of the two-point
boundary-value problem of the calculus of variations for optimum orbits.

The method employed uses Lagrange multipliers and PontryaginVs
maximum principle to obtain the decision functions.

In addition, two differcnti_fl correction schemes aredescribed. The

first scheme is a "method by for_vard integration, " and the second is an
alternate "method by backward integration" that attempts to reduce the
difficulties that might be encountered in inverting a differential correction
matrix.

The optimum orbit is determined by a perturbation method similar to
that of Encke and accommodates hyperbolic as well as elliptic orbits. The

equations necessary for the generation of a digital-computer program are
derived.
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INTRODUCTION

i '

The usual methods of solving the two-point boundary-value problem of
the calculus of variations involve the use of iterative gradient techniques. With
these methods, the desired solution is reached only after making a great
number of incremental variations and examining the changes that these varia-

tions cause. As one might expect, the rate of convergence for this method is
very slow.

Another method of solving the two point boundary value problem of the
calculus of variations, which will be described in this report, is one where all
the decision functions and trajectories that are being used are extremals. This
method uses, in addition to the state variables Lagrange multipliers or

adjoint variables that play the key role in deciding the optimal direction of
thrust, time of thrust duration, etc. The adjoint variables also define the

natural end-point conditions by which the two-point boundary-value problem
can be terminated. This natural end point, in general, will not be the desired
end point. A differential correction scheme provides the means of obtaining
another optimum trajectory the natural end poifit of which will be closer to the
desired end point.

2



EQUATIONSOF MOTION

In a Newtoniansystem, the equationsof motion of a particle that is in the
gravitational field of N attracting bodiesand is subject to other accelerations,
suchas thrust, drag, oblateness, radiation pressure, etc., are given by

N _RvBKZ
-V u BK r

K=I VB K j

The problem that will be considered here is one in which the vehicle is in the
gravitational field of only one body and is subjected to a variable thrust k. In
this case, Eq. (1) is reduced to

(i)

R k
-R =-P -_- +--m _T (2)

r

where T is a unit vector in the direction of thrust. The magnitude of the thrust

is takento be proportional to the mass flow and is given by

k = - cxh (3)

The constant of proportionality e is related to the more commonly used constant

specific impulse I by
sp

c = Ispg (4)

DERIVATION OF OPTIMIZATION EQUATIONS

In the derivation of the optimization equations, it will be assumed that the

vehicle can have two possible values of thrust, either k = kmax or k ,,kmin.

magnitudes of these two thrust values may differ with each stage.

Minimum-Fuel Condition

The value of the integral to be minimized is given by

I = _t Fdm = F -_hdt
O o

3

The

.(5)
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and the conditions of constraint are given by

uR k
V +'- T=0
- 3 m -

r

- v = o (6)

k
fia +--=0

C

Because these conditions of constraint are satisfied at every point on the trajectory,

we may rewrite Eq. (5), without changing its value, as

I_ /_R k k_=_t-]_tF fn+X_-(V+ r3 m_T) ÷y- _-V)+_(fia +_)]dt
I

O

tF L(_t, R, V,V, rh, m, __, _, cy) dt
ot

0

(7)

where __(t), Z(t), and a(t) are undetermined Lagrange multipliers that are chosen
so as to determine the optimum decision functions required to solve the problem.

Applying the Euler Lagrange equation

d 5L 5L

dT(_) -_ : o (8)

to the state variables, results in the following set of equations:

/a)t 3# _" _)_)
. 3 + 5 a = 0 (9)
r r

k--_-h- T=0
m

4
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Equations {6) and (9) can be combined to form

i_= /_R k
-- 3 m --

r

k= -cIh

k
& =--_- )_. T

m

In addition, the natural boundary conditions are

0

0

=0

(11)

Because ,variations in the position and velocity at the end points are zero,
the first two expressions of Eq. (11) yield no additional information about the

values of ), and _Z at the end points. The variation of mass at the final end
point, however, is not zero, i.e., 6m (tF) / 0 . Hence, the only way to satisfy
the third expression of Eq. (11) is to demand that

cr(tF) - 1 = 0 (12)

The only additional information that is necessary to completely define the extremal
is the determination of the optimum thrust vector and the duration of this thrust.

For the determination of this decision function, we make use of Pontryagin's

"Maximum Principle," (1,2)whic h states that a necessary condition for an integral

of the form of Eq. (7) to be minimized is that the Hamiltonian be a maximum. The
Hami/tonian for this problem is given by

5
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k]m - c (13)

E .R'X _'R'_' +kY-_'T_-.m --_]
r 3 - - J c

For H to be a maximum, the unit thrust vector T must be in the direction

of )_, or

T =--

Therefore, the coefficient of k in Eq. (13), which is defined as the switch
function, becomes

(7
S - '

m c

(14)

(15)

The necessary conditions that must be placed on the magnitude of the thrust for
H to be a maximum are the following:

if S > 0 then k =k
max

ff S< 0 then k =k
min

(15a)

Furthermore, when thrust is applied, it is desirable to make the switch function
as large as possible. This can be accomplished by allowing the mass to be as
small as permissible, which implies the obvious condition that any empty tanks

or other unnecessary weigh_ be dropped as soon as possible.

' Minimum-Time Condition

In this case, the value of the integral to be minimized is given by

_t tF f_F_l k V /_R3I= dt = + _'( _
r

o o

ink----T)+_7_._-_ +a,fn +k)] dt

(16)

Application of the Euler Lagrange equations and Pontryagin's Principle lead to
the exact same results as the minimum-fuel condition, with the exception of one



of the natural-boundary conditions.
we now have

or

t F

_Sm It
O

(_ (tF) = 0

=0

In place of the third expression in Eq. (11),

(17)

Therefore, for the "minimum-time" condition the natural end point occurs
when (_ = 0.

ITERATION SCHEME

General Procedure

The problem is to generate a set of initial adjoint variables such that an
optimum orbit can be computed where the natural end point matches the desired
end point. (The end points are, of course, given by terminal values of the state

variables.) With initial values of the state variables specified and an estimate
for the initial values of the adjoint variables, an iterative method can be used to
solve this problem. Improved estimates for the initial values of the adjoint
variables can be obtained by computing the residuals or differences between the
values of the state variables at the desired end point and the natural end point
and then applying a differential correction matrix to these residuals. We define

the {r], {)_ ], and {5 (tF) ] vectors as

{r] =

{5(t F) ] =

and

f'X

Y

Z

"x (t F ) - x E

Y (t F) - YE

z (t F ) - z E

(tF) -

(tF) -

_" (tF) - _'E

m(tF) - m E

=

C

k z

, (is)

(19)

7
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where the subscript E denotes the values of the state variables at the desired
end point.

• The Kth approximation to {A (to)} is designated by {)_(K)(to)],and itis

:x(K+I)
desired to obtain an improved value of ¢ (iF)} . The procedure is as

(K)(to)follows: using {X } in the integrationscheme, the position, velocity

time tF, as well as the residuals {5(K)(tF)], are computed; andand l]_ass at

the initialvalues of the adjoint variables are then changed so as to reduce the

residuals,

{)_(K+l)(t_} = {)_(IQ(to)} + {A),(K),to)}

where {Z2k(K)(to)} is to be found by using a differentialcorrection matrix.

Methods for Obtaining the Differential Correction Matrix

Making use of Eqs. (14) and (18), the first two expressions of Eq.
be written as follows:

or Pi = qi({r}, [X})

or _,i= Pi({r], [)_])

where.

ql

q2

q3

q4

q5

=2

= __/_x +k x
3 mr IXl

X
=___y__ +k_.._

ra m tXl
)t

k z
q6 =-'_3z +m

r lxl
k

q7 = c

(20)

(10) can

(21)

(22)
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and
uX

X

Pl = 3
r

p2 "_y= 3
r

_X z .

P3 = 3
r

X
5

r

3U{_R.__)
5 Y

r

3u_.X)
Z

5
r

P4 = Xx

P5 = Xx

P6 = kz

k
P7 = "---y I_l

II1

Taking the variations of Eq. (21) with respect to a set of parameters

{(_} = (_i' (_2...... _7) , we find that

d [¢] = IF ] re] +FG] [A]
dt

d rA]=-[F ]* [A]+ [J ] [¢]
dt

(23)

(24)



where

[¢]=_ =

m

1

1

5°_5 5°_6 _7

5_ 7

(25)
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[A]=%_ =

-SXx(t) -5kx(t) -52x (t)

_Xx(t)

5 Xz(t) "

11
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Method of Fomvard Integration. Two convenient sets of parameters to
work with are the sets that consist of the initial values of the state variables

and adjoint variables, which are, respectively

{_}A = {r(to)}

and (29)

{_}B = {l(to )}

Using these Sets of parameters, Eq. (24) can be integrated "forward"
shnultaneously with equations of motion, using the initial values of [¢] and
[A ] as given by

AA(to) ]

and

_B(to) _ = 0

LAB(to) = I

(30)

I

I

I

The differential corrections are obtained by solving the system of equations

( -1 r -

{_X(tF)}=[AA(tF) ] {--Ax(to)} +[%(tF) ] {_)_(to) }

(31)

and, because

I

I

I

I

we find
r ,- 7-1 r. •

(32)

An interesting feature of this differential correction scheme is a tendency

for the inverse of the differential correction matrix [@B(tF)] to become more

and more singular as the time arc increases. This tendency toward singularity
is a problem of utmost interest.

I
I

I

Method of Backward Integration. If the use of double-precision tech-
.niques fails to provide the required numerical accuracy for the inverse of the
matrix, an alternate method of generating the differential correction matrix

can be used. This alternate scheme employs a method of "backward" inte-
gration to provide a differential correction matrix consisting of the sum of two
matrices, only one of which requires inversion to produce the differential

corrections, In this case, the two sets of parameters consis_ of the fina___l

14



values of tl/e state variables and adjoint variables,

spective ly

r

ICe]A = "i r (tF)}

which are, re-

and {33)

Using these sets of parameters, the variational Eq. (24) can be inte-
grated "backward. " The procedure is as follows: the equations of motion are
integrated "forward" until the natural end point is reached; the residuals are

computed; and, then, Eq. (24), together with the equations of motion, are

simultaneously integrated 'q_ackward" starting at time t F and ending at time

to, using for initial values of [_] and CA ] :

L_A(tF) ] = and [._B (tF) -] = 0

_ LAA (tF);: _[%(tF_]:I

(34)

Thedifferential corrections are obtained by solving the equations

[AA(to) ] _Ar (tF)} + lAB(to) ] {_t(tF) }

[¢A(to)] {dr (tF)it+ [_B(to) ] {AX(tF) }

(35)

and, because, in this case,

{A r (to) } =0 and _Ar (tF)} = {5(tF) }

solving Eq. (35) for {A), (to) ], we find that

{ &)" (to)i = [[AA(to) ] - lAB(to ) ] [_B(to) ]-1[CA(to) ]] (5(tF))" (36)

Convert_ence of Iteration

Several difficulties are connected with the above iteration scheme, and

some of them might be crucial enough to cause divergence of the iteration.
These difficulties might arise for the following reasons:

1. In the variational equations, _e variation of burning time
is not accounted for.

15
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The inversion of a matrix is required in both methods to
obtain the differential-correction matrix. Furthermore

this inversion becomes more involved since the residual

m(tF)-m E of the vector [ 6(tF)J is unspecified a_d requires

additional computation.

The change At F in the final time has not been taken into
account. However, this should be included by considering

the additional transversality condition which results in
_x_" ir_=O.

DIGITA L PROGRAM

Trajectory Equations

The equations that completely define the trajectory have been described

previously. The order in which these equations are programmed for the

general case (with thrust) is as follows:

_) >0 k kS---( m max

< 0 k = kmi n

k

C

2
m

d [¢3 = IF ] [¢] + [G] [hi
dt

d [hi= - [F]*EA] + [J][¢]
dt

(37)

__ ]_R k __
- m Ixl

r

_,. _ _x__+ 3_@.R) R
- 3 r5 --r

t +At
_t

m =m(t) +_ fil dt
_t

+._t + At(r =o' (t) ¢r dt
"t

16



Theseequations are integrated until the natural end point is reached. At that
time, the residuals are computedandcompared to a predetermined set of
maximum permissible values {et.

If 5j(tF) < _j for all the residuals, then that trajectory is the solution

to the two-point boundary-value problem. If 5.{tF) > ¢. for any of the re-J J
siduals, then a differential correction is applied to the initial values of the
adjoint variables as described previously. If the alternate differential correction
scheme is used, then a '%ackward" integration is necessary before any correc-
tions can be applied.

Numerical Procedures

The differential equations of Eq. (37) can be integrated numerically with
a Runge-Kutta fourth-order method. To reduce any accumulation of error
that might result from a number of step-by-step integration, however, it is
convenient to write the equation of motion for the high thrust ease in the form

- = gu + _" . (38a)

The velocity and position vectors can be written as

(38b)

where 1_u is the unperturbed solution and _ is the perturbation.

and

In this method, R is taken as
--U

k crh
R =--T. - T-u m -1 m i

- ---5_ m T-T. --1
r

(39)

(40)

Eq. (40) is integrated numerically, and the solution to Eq. (39) is

°

R =f +gR +-u R(ti) (ti) hT(ti)

I_ = i'R (ti) + g R (ti) + hT(ti)

(41)

17
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where

f=l

g=t-t.
1

h=-c -_ lLmlogm-m. logm i-

f=0

$=1

(m -mi) j- (t-ti) log m i

h = - c(log m - log mi)

m= m i + (t -ti) gn

°

(the subscript i refers to values at time ti)

This perturbation method, or Encke scheme as it is commonly called,
will reduce inaccuracies occurring in numerical integration, provided that the
perturbation terms are small compared with the total solution. Whenever

these perturbations become too large, a rectification takes place, i.e., an
initialization occurs in which the values of the variable at time t now becomes

the values of the variable at time t.. A rectification takes place whenever any1
of the following conditions occur:

I

(pos ition rectification)

I'_1 > _vel (velocity rectification) (42)

_2T. T. >_
-- --1 ace

(acceleration rectification)

SOLUTION OF EQUATIONS FOR THE COASTING STAGES

The solution of the equations of motion and the Euler Lagrange equations

can be derived in clQsed form for the coasting period. In the no thrust region
(k=0), the equation of motion reduces to

_It = ---5- (Kepler problem) (4.3)
r

18
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The two-body orbit that results from the solution of Eq. (43) with the initial
conditions

R(ti) = _Ri

R (ti) = R i

(44)

can be written as a linear combination of R. and R. as
--1 --1

R = f _Ri+ g _Ri

R=f_Ri+gR i

The coefficients f, g, f, and g are obtained as follows:

conditions by the set of elements

2 vi

a = ri

di= _Ri • "_Ri

u 1/2
n - a3/2

(elliptic)

• i/2
(hyperbolic)

(45)

we represent the initial

(46)

This results in the following Kepler's equation

ro d.

1 sine+-- (1-cose)
n(t-ti) = O-sine+ a

(elliptic)

n(t-ti) =sinh8-0-

r. d. g

l +__}__I(cosh e-l) (hyperbolic)

(47)

where e(t) is the incremental eccentric anomaly E-Ei; the functions fl' f2

f3' f4 are defined as

19
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fi(8) = e - sme

f2(e) = 1 - COS e

f3 = sin 0 = _9-fl(O)

f4 = cos0 = 1 - f2(0)

fl(O) =sinh O- e

f2(o) = cosh O- 1

f3(e)= sinh O= (9 + fl(O)

f4(e) = cosh e= 1 + f2(e)

(elliptic)

(hyperbolic)

(48)

and the solution of the two-body problem for both ellipticand hyperbolic orbits

is given by

lal
f = --- f2+1r.

1

1 fl + (tg = - n - ti)

r f2+ ri d.= 1 f3T -f4+j T

1

(49)

_=--L_f2+ 1
r

r. d.

n(t-ti) =fl + f3 + f2

For the non-thrust case, we also can solve for [)_] in closed form. The

following is a derivation leading to this closed-form solution: the differential

equation for the adjointvariables are written as

d [A.} =- [F]*[A.}
dt

(50)

20
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where IF] is defined by Eq. (27);

d
dT [¢] = IF] [¢ ]

taking the transpose of Eq. (50) and postmultiplying by [ ¢], yields

d }* ]*aT IX [¢] =- (), [F][¢]

premultiplying Eq. (51) by [), }*, yields

{k]* d_- [¢] : {), ]*[ F ] [¢]

comparing Eqs. (52) and (53), we see that

*d d *
ix] [¢3--0

or

dt_ Ef_*_¢_] =°

the variational equation for [ • ] reduces to

(5i)

Eq. (54) states that IA }*[¢] is a constant and, therefore, can be written as

[A(t)]* [¢(t)] = {A(tK)?[_(tK) i

is any fixed time in the no-thrust interval;

(52)

(53)

[),(t)] _*(t)] -1 - *= L¢ (tK)] {X (tK) } (56)

In the case where the set of parameters [ (_ ] corresponds to a set of the state

variables [ r], the matrix [¢] can be written as

['A (t)]= (@ACt - tK) ] ['A (tK)] (57)

taking the transpose and then the inverse of Eq. (57), leads to

[@*(t) ]'1 = [@; (t - tK)]-I i¢; (tK) ] -1 (58)

21

• where t K

results in

solving Eq. (55) for [ k (t) ],

(55)

(54)
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and combining Eqs. (56} and (58), results in

[), {t)]= I@A (t-tK)_-i _), (tK)}

which is the closed form solution of I ), (t) } .

The elements of the Lq_A(t - t K matrix are obtained by differentiating

the Kepler orbit elements with respect to R(tK) and 1_ (tK). The elements of

L(bA (t- tK) Pq = 5rq(tK ) , with p, q=l, .... , 7, are as follows:

5xi(t) = 5xi =f6.. + Xoj x i -Xoi -(t-tK)/¢oi j
_-_j (t K) aXoj 'J r°

+ [a I:o_j__(_i _ _oi) L_3" + or r(t-tK) +g (1-_) f3]
r o Ia In

a_<_i-_o_>_oj_<++_> :+ "-'5" XiXojo r
0

5xi(t)--_ =g +3-_ ix i -(t-_ffcj(tK) 6ij /_oj -Xoi tK) _:oi

+
[a I/¢oj = r

# "(:ki -/¢oi)_ 3(t-tK) +g +_n f3

oJ l v, f2

2
a

+-- f2 x .i:
/_r ° ol oj

22

(59)

(60)
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bxj(tK) bXoj ij

]alx0j,F r._ r _ -Z-_-T-] _ ° (i- f3J3 3 LXi+r(/(i-Xoi ) L-3(t-tK)+g+_-_
r r

o

]a_oj ix r. 'r _ r 0 .f+ 3 i + r_i-Xoi ) _ jf2 +_-(/(i-_oi ) /(o1
1"

5:ki(t) _k i

_j(tK) b_oj

aJ_2_(7_ + )XoiXoj+ [al
r o r 3 (;ki-/¢oi ) Xoj

0 0

r'. "_r

+ r(i(i-_oi)---_] I-3(t -

r° r ]+ -_- (1 -_) f4

(60 continued)

r -1
O

tK)+g + _a-_ f3 _

r • 1-

+ a-_3 f2Xoj [xi+r(_ki-Xoi) /./

r 0

ro lat.
+ _ (_i -/_oi ) Xoi f- -_ f Xoi :koj

where i, j=l, 2, 3 correspond to the x, y and z components and
d

x o x(t K)

r o r(t K)

r --r(t)

The inverse, [¢A(t tK)] -1- , can be obtained from the above expression by replacing

t -* -t r -. r
0

O- 0 x -'x
O

r-" r x -_ x
0 0

This results in

fl :-fl f -"$

f2 f2 g -" -g

f3 : -f3 f "* - f
f4 f4 g-" f

23
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center I)r_l_lcm are dew:l_,pcd. I"_mrof thes,, mcth,_ls arise t'ro:n a f_nmt,lzdion

of tt_c rcstric'tcd t)roblcm in _ r,_t._tml_c,,,,rdm_tc syStcln. "I'ht,,_rl_ln of the

rot:ttm/ svst_,m, to I)_* r_,gar_h,d as I]lt' ('Ollt,('I" _I" r_t_ltion is to be so selcctc(1 as

to illll)Fovc the degree of aPt)r,)xiln;lll(_ii. The ,)I]it'r [_() ;tl't_ dcvt, lo|)t,d fl'()IIl ;1

formul;_tirm in ,'In inertial system with flctitiou> fixed posiLitms _ff tt_c earth _md

mooa ._clcctcd so as to lust)rove the appr()xinlati_m.

The result..4 of ,t numt, rical comparison of the six muU_otls _ith a Iyi)w:ll

lunar- trajectory and the Kepler predictions arc presented. "Fhcse results :_re

discussed :rod some suggestions are made for further development of Lhe thc,_ry.
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R

R 1

r 1

R 2

r 2

L

L

G

a,_,),

AI=A-_G

R A

H A

LIST OF SYMBOLS

Position vector of vehicle relative to the earth-moon barycenter

Position vector of the vehicle relative to the earth

Distance of vehicle from earth

Position vector of the vehicle relative to the moon

Distance of vehicle from moon

Gravitational constant times mass of the earth

Gravitational constant times mass of the moon

Position vector of moon relative to the earth

Distance of moon from earth

Velocity vector of the moon relative to the earth

Angular velocity vector of the moon relative to the earth

Magnitude of t_

Origin, relative to the barycenter, of the rotating coordinate

system

Constants relating A to L, G and

Projection of A on the plane of the moonls motion

Position vector of the vehicle relative to A

Hamiltonian for restricted problem in a coordinate system

rotating with angular velocity G about A

Position vector of vehicle relative to A in the rotating system

Momentum vector conjugate to RA



HE

H 1

M(O

6

H

P

Hamiltonian for the Euler, or two fixed center problem

Perturbation Hamiltonian

Rotation matrix through an angle -_ot about t_

A parameter introduced to improve minimization of the effect
of the non-integrable terms in the perturbation equations

Hamiltonian in the inertial system

Momentum conjugate to R in the inertial system
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SUBSCRIPTS

E

R

o

F

NOTE:

Refers to Euler problem

Refers to restricted problem

Refers to initial value

Refers to final value

In general, capital letters represent vectors and the corres-
ponding small letters their magnitudes. Bars over vectors
denote vectors in a rotating coordinate system.



!
!
|
I
!
|

I
I
I
!

!
!
!

INTRODUCTION

In this report two general methods of obtaining approximations to the three

dimensional restricted problem in terms of the two fixed center problem will be

discussed in detail. The first method is based on a formulation of the restricted

problem in a rotating coordinate system and the Second on a formulation in an

inertial system. In both methods perturbation equations are obtained for the

initial conditions of the two fixed center problem regarded as osculating time

varying parameters for the restricted problem. B_th of these methods represent

generalizations of a method developed by Arenstorffor treating the two dimen-

sional restricted problem in a coordinate system rotating about the barycenter

of the earth and moon.

The present formulation in the rotating system involves the selection of four

scalar parameters in such a way as to reduce the effects of the non-integrable

terms in the perturbation equations. Three of these parameters define the origin,

to be regarded as the center of rotation, of the rotating system. The fourth allows

part of one of the lntegrable terms to be used to reduce the effect of some of the

non-integrable terms. A method for the determination of these four parameters

is presented, and a set of osculating initial conditions is obtained by an approxi-

mate integration of the perturbation equations. In addition to this sot three other

sets are obtained by variations in the values of these parameters. In all of the

methods developed the center of rotation is close to the center of the earth ff

the portion of the restricted orbit to be approximated has a close approach to the

earth and no close approach to the moon. The center of rotation is close to the

moon if the portion of the restricted orbit has a close approach to the moon and

not to the earth. For midcourse portions, the center of rotation is somewhere

between the earth and the moon. No attempt has so far been made to extend the

theory to the approximation of portions containing close approaches to both the

earth and the moon.
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The formulation in the inertial system makes use of fictitious fixed positions

for the earth and moon, so selected as to reduce the effect of the non-integrable

terms in the perturbation equations. Two sets of formulas result which di/fer

in the approximations used in the integration of the perturbation equations.

Altogether, then, six schemes are developed for appraximating the restrict-

ed problem by the two fixed center problem. These schemes have been tested

numerically for various portions of a typical lunar trajectory obtained by numeri-

cal integration. Some results of this numerical comparison are presented,

following the analytical treatment.

The comparison shows clearly that the formulations in the rotating system

are superior and the reasons for thls are discussed in the last section.

2



THEORY FOR THE ROTATING SYSTEM

Derivation of the Perturbation Equations

The equations of motion of the restricted problem in an inertial system with

origin at the barycenter are

R = -_
R1 , R2

3 _ --T-
rI r2

Consider a point A defined by

A = c_ L + _t_+)/L"

where L and L are position and velocity vectors of the moon relative to the earth,

and hence are known functions of time satisfying the relation

L =-0_+_')L =f_x (_xL)
AI= o_L+-yL

el

A = t_x (_x A) = - w 2 A 1

I =..x,.
G= LxL

The point A thus rotates about the barycenter with the earth and the moon.

I equations of motion for the restricted problem in acceleratedan coordinate

system with origin at A, but with axes always parallel to those of the inertial

I . system, are

• .. = R1 _'R_ _X
R A /_ r13 r23|

The

since

• o, .. ,.

RfA+R A, R=A+R A, R =A +R A

and finally in a coordinate system rotating about A with angular velocity C4 the.

equation of motion become

3

(z)

(3)

(4)

(5)
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.- rl1 ,
RA = - _ --3 - _

rI

R
2 '--'

- A - t_x (t_x %) - 2(GX_tA)

r2

where bars denote vectors in the rotating system. We assume that at time

t = 0, the axes of the rotating system are parallel to those in the inertial

system, so that the constant vectors X', _ and _ satisfy the relations

--A(0) k=A(0) _--- 2_I___ 2AI(0)

Itis readily verified that the Hamiltonlan

1--2 ____ W2- A G*]IAx 9A
HA=2PA-r_I- r2 R A" 1-

is a Hamiltonian for the problem represented by Eq.

R A = gradPA HA = I_A - Ox [_A

(6)with

and

_A=_A Gx_ A - HA
+ = _ gradRA

R1 _ _' R2 W2
= " _ --3 --3 + X 1-t_x 15"A

r I r 2

R 1 R2 2
_1- fix 1_ G,x (tqx lIA)= - #'--3- #' --3 + _

rI r2

(6)

which reduces immediately to Eq. (6). A word on the relation between position in

the rotati.ng system [t A and its conjugate momentum PAand the position R A and

velocity R A in the non-rotating system is necessary for the interpretation of re-

suits to be obtained later. Since the rotating and non-rotating systems are assumed

coincident at t = 0

i_A0 ffi RA0

4

%0 = _tA0 + Gx RA0 = RA0

(7)

(8)

(9)

(io)

(Ii)
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are vector equations which are valid component by component, and since RA0

is the velocity relative to A in the rotating system while t_x RA0 is the velocity

due to the rotation of the system itis seen that the initialvalue of the momentum

conjugate to RA is just the velocity in the non-rotating system. The same state-

ments hold for time t also, except that to get component agreement a rotation

through _t is necessary. That is, at time t

RA = M-l(t) RA
(12)

RA = M-1lt) PA = M-1lt) (I_A + i'Ix RA)

where M-l(t) may be regarded either as a rotation of the axes of the rotating

system through an angle _ or as a rotation of RA and i5A relative to the

I rotating axes through and angle wt, both rotations about the vector G which is
the same in both systems.

I The Hamiltonian may be written as the sum ofHA

1

HE=_PA 2-r_l-r_2 (13)

I
I
#
I
!
!
l

!

the Hamiltonian for the Euler problem with Hamilton equation

= - HE = _AE
RAE grad PAE

• ._.. R 1 R 2
PAE =RAE =" D_" #'

rI r2

and a perturbation

HI=_W2 [_A" XI-G" rtAX 15A

where the subscript E in Eqs. (14)refers to the functional forms for [tA and

]5A obtained by solving Eqs. {14).

A solution of the restricted problem with Hamiltonian given by Eq. (8 )

and Hamiltonian F4s. (9 ) and (10) is now sought in the functional form of the

solution of the Euler problem with time varying initialconditions. That is,

(£4)

(15)
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one seeks the solution of the restricted problem,denoted by a subscript R0in the

form

RAR (RAR 0, 15AR 0, t) = RAE _RAE0(t), PAE0(t), tJ

iSAR (RARo' 15AR0' t)= _AE_RAE0(t), 15AE0(t), tj

with initialconditions for the restricted andEuler problems satisfying the rela-

tions

RAR(RAR0' _AR0' 0) = _tAR 0

PAR(RAR0 ' _AR0' 0) = 15AR0

= RAE _RAE0(0), PAE0(0), 0_= RAE(0)

= 15AE _tAE0(0), PAE0(0),0_ = PAE0 (0)

Ithas been shown by Arenstorf 1that the functions RAE0(t ) and PAE0(t)

necessary for the validityof Eq. (16)satisfy the differentialequations

(16)

(17)

d •

_- _tAE0(t ) = grad 15AE 0 H1

d_ 15AE0(t) = _ gradhAE0 R 1

(18)

where

R 1 = R 1 _AE0(t), 15AE0(t ), t_

is obtained by substitution of RAE _RAE0(t), _AE0(t), t) and PAE _RAE0(t)'

15AE0(t), t)for R A and ]5A in H 1 (givenby Eq. (15)o To actually carry out the

substitution using the solution of theEuler problem (which is known in closed form)

and then compute the gradients required in Eq. (18) would be very complex be-

cause of the extreme complexity of the closed form solution. Even could this

be carried out the integration of the resulting highly nonlinear equations in

RAE0(t ) and 15AE0(t) would be very difficult. Further, any approximation method

for integration of perturbation equations for initialconditions must be developed

with great care to avoid the introduction of troublesome secular terms, which

increase in order with higher order approximations.

(19)

6



In view of this last fundamental difficulty, only a first approximation will

be attempted. This approximation will lead to some integrable terms in the

perturbation equations and the point A will be selected in such a way as to reduce

the effect of the non-tntegrable terms, which will then be ignored. The resulting

expressions for the time variation in the initial conditions and hence the solution

of the restricted problem represented by Eq. (16) will thus have limited validity

I in time. The hardest part of the problem will be in obtaining an estimate for
duration of validity. Although thismight appear to restrict considerably the

I application of the theory, itshould nevertheless be noted that from the solutions

of a sequence of two fixed center problems, each valid for a certain time, the

'solution el the restricted problem may be constructed solely in terms of closed

form calc_latlons without the use of numerical integration. Such a procedure

_ will be outlined later.

Explicit Form of the Perturbation Equations

To proceed with the approximation HI is written in the form

p _[1 = - _I'RAE0 x _AE0 " 2 6 RAE(_ A I-w 2 (I-5) RA_ _[I

R1 _ R2

rI r2

(20)

where the integral is obtained by time differentiation of (.._2 6 _tA_ Xl-f_-_tAEX PAE)

and use of the Hamilton Eqs. (14) for the Euler problem. The first two terms

of H1 will be shown to lead to lntegrable terms in the perturbation equations (18) for

the initial conditions. The factor 6 permits part of the R_ A 1 term to appear with

the integrable terms and part with the non-integrable terms. This second part helps

to reduce the effect of the other non-integrable terms. The third term and the

integral are not written explicitly in terms of initial conditions, it is these terms

for which an effort at minimization will be made by proper selection of the factor 5

and the point A. To see how this may be done one now takes the gradients of It 1

with respect to RAE0 and lSAE 0 to obtain the perturbation equations. The differ-

entiation of the triple product in the integral is facilitated by noting that

I' --,- r_. _ ............. I
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so that

I

_+_

I

R 2 = RA + A _ T.
(21)

(22)

i
I
I

The perturbation equations for the time derivatives of RAE0(t) and PAE0(t)

are readily verified to be

d RAE0(t ) - =-_,x -_2(1-5)_/Rp A 1d-t- = gradPAEoH1 RAE0

- _iW2 6 _/ppAI-_Rp(GX M-wQ) ] dt

(23)

I

i

and

_-tPAE0(t) = - gradRAEoH I= - f/x PAE0 + _26 A1 + _2(I-6)_RRAI

+ _LoJ26_pRA1-_RR(C/x M-c_Q)_ dt

where the M and Q are vectors given by

(24)

i
I
I
I

!

K+ u_.__, L ___IL ,L

M=/_ /J+/_3 "" +/J' /J+/_3

r I r 2

Q _ _'_tAE x _+_ --
r15

r 2

(25)

I

I

I

These vectors are so defined that they have the same dimension.

matrices given by

The _'s are



RA-Ej )

(26)

AE0i AE0i

with the i th row and jth column containing the derivative of the jth component of the

time varying vector in the numerator with respect to the tth component of the initial

value vector in the denominator evaluated at RAE0(t ) and PAE0(t). 1_ may be noted
0

that the transposes of these matrices constitute the transition matrix for the Euler
1

problem with _the transposes of the first two matrices forming the top three rows

and the transposes of the last two matrices forming the bottom three rows.

Determination of the Origin A and the Parameter 5

The first term in the right hand side of Eq. (23) and the first two terms on

the right side of Eq. (24) depend only on the initial values RAE0(t ) and PAE0(t)

and ff these were the only terms present Eqs. (23) and (24) would be integrable.

The remaining terms all involve components of the transition matrix for the

Euler problem and no attempt will be made to include them in the integration.

Instead methods will be sought for making them small, and this will be done by

seeking an approximate minimization of the vectors on which the matrices operate.

These vectors appear in both equations as follows:

N1 = W2(1-5)_1 outside the integrals

(27)

N 2 w25 X 1 inside the integrals

together with M and Q defined in Eqs. (25), which appear inside the integrals.

It will be noted that all these vectors have the same dimension. The vectors

M and Q are functions of time. Since however, they have, effectively, the cubes

of r 1 and r 2 in the denominator, it is clear that they are large only for brief

periods of time at approach to the earth or the moon closer than a few earth

radii.
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As a first trial at minimization, 6 and A were sought such that the

scalar

cr= N124"N22+Mo 2+M_ 2 (28)

is minimized, where M° and Mf are computed from initial and anticipated final

conditions, respectively. The omission of Q is heuristically justified by an argument

of the following type. Suppose the initial position is close to the earth and the final

position close to the moon. Initially the r 2 terms are small, so that to minimize

the r 1 terms ÷ must nearly vanish in order to keep M ° small. It will

then follow that Qo is also small: Evidently, of course, such a procedure will

mean that both Mf and Qf will become more or less large depending on the final

value of r 2. In effect, this will place a limitation on the duration of validity of.

the two fixed center approximation.

The minimization of Eq. (28) will now be carried out. Since M and, for

that matter Q also, are independent of 5, partial de rivatives of (7 with respect

to 5 involve only the N 1 and N 2 terms:

_--_-NI--_+ N2" _---_

1
which vanishes for 6 = _. Itnow remains to minimize

0'i= 21-_ 4 X"2 + Mo 2 + Mf 2

(29)

(30)

with respect to c_, _ and 7. That is the equations

= w 4 1h'ox ÷
Mo _ Mf

Mo* _ + 2Mf° _x--=0 (31)

where x denotes'a, _ and y must be solved for a, _.and y.

"I" -g-

Recalling that

(32)

10



one obtains the following:

_Ai _A
z = _., _=o =_,

_A1 _ _"

By _y L (33)

and from the first of Eqs. (25) evaluated at initial and final positions, respective-

ly:

5_ + r23.}, _-= rl r2 _'-= _(? +?)(34)

so that

- B_I- _il L2 iI o, -_i2A.-_T--(_ , -- A;_-

E-Effia + ' f l i " -P--+-_3_
'2+D+_-_ '2k-r13 r_(rl 3 r2

M._ = (,,2(_E_+_ _.m._ r213 x'rl3 r23 r13 .

Substitution in Eq. (31) forx = _] and y lead to

_=y=0

while for x = ct, one obtains

rlf r2f

rlO 3 r20 rlO 20

I
I
I
I
I
!
!
¢

=0!. _._ ÷__L)]+(r_ )(- .3 r2f3 rlf3 r2f3

,,l=Olf

or

(35)

lw4

i=O,f rli r2i

11

(36)

(37)

(38)

(39)

(40)
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Some comments on the value of _ may be made. If a close approach only

to the earth is made, that is if either rl0 or rlf is close to unity while r20 and

r2f are both large it is readily seen that

I

0_"-- _- -_,
_+_

which corresponds to placing the origin at the earth, while if a close approach only

to the moon is made

which corresponds to placing the origin at the moon. If a midcourse portion of

the trajectory is to be approximated so that none of the r's is near unity a will

be somewhere between these extreme values -- that is the origin will lie on the

line of centers between the earth and the moon. The origin is at the barycenter

for c_ = O.

_te_ration of the Perttirbation Equations

Once the point A has been determined the non-integrable terms in the

perturbation equations (23) and (24) will be ignored and the equations to be

integrated are

d_RAE0(t) = -T] x RAE0(t) (41)

d__dtPAE0 (t)= - _ x PAE0(t) ÷ U_26 X

=- _'x <_AE0(t) + 6 _ x ,_)

(42)

where use has been made of the relation

_x(LTx_)=- 2

The integrals of these equations are, since 5 _ x/_ is a constant,

(43)

12
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RAE0(t) = M(t) RAE0(0)

_AEo(t)--M(t)_AE0(0)+_n xx I - 6n xx

where the matrix M(t) is a rotation matrix through an angle -wt about the

direction.

(44)

(45)

Referring back, now, to Eq. (16), it is seen that, in the rotating system,

a solution to the restricted problem valid from the initial time zero to some

time t, determined by how long the nonintegrable terms remain negligible, is

obtained by substitution of the expressions (44) and (45) for RAE0(t) and 15AE0(t )

in terms of the two fixed center problem. This means that in order to construct

the solution of the restricted problem in terms of that of the two fixed center

problem, it is necessary, for each time t of interest, to compute initial conditions

from Eqs. (44) and (45), and then obtain the solution,evaluated at the time t, of a

two fixed center problem with these initial conditions. Thus ff n points on the re-

stricted orbit are desired, n different two fixed center problems must be evalu-

ated.

One other point should be mentioned. The initial value PAE0(0) is to be

thought of as given by _AR0' which in turn is determined by the first Hamilton

equation {9) for the restricted problem evaiuauca at time t=-0:

PAR0 = RA0 ÷ Gx RA0 = RA0 (46)

where RA0 is the initial velocity in the non-rotating system, since the assump-

tion has been made that the rotating and non-rotating systems have parallel axes

at the initial time. Once PAE0(0) has been been determined PAE0(t) is given by

Eq. (45) and is to be interpreted as an initial velocity relative to A in the rotat-

ing system for the two fixed center problem, by virtue of the first of the Hamilton

equations (14) for this problem. Since in the rotating system the earth and moon

are fixed the initial velocity PAE0(t) is the same relative to any point in,_this

system. The two fixed center solution obtained from this initial velocity PAE0(t) '

and the initial position ttAE0(t ) lead to position RAE(t) and velocity PAE(t)

for the two fixed center problem, which are to be interpreted as position RAR(t)

and momentum _AR(t} for the restricted problem in the rotating system.

13
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THEORY FOR THE INERTIAL SYSTEM

Derivation and Integration of the Perturbation Equations

A direct approach to an approximation of the solution of the restricted

problem by the two fixed center problem in an inertial coordinate system can

be developed as follows. Recalling the equations of motion for the restricted

problem in the inertial system with origin at the barycenter.

- R 1 , R2

r 1 r 2

it is easily shown that the Hamiltonian is

H=½/ 
r 1 r 2

This Hamiltonian has an explicit time dependence since r 1 and r 2 are distances

of the vehicle fronl the earth and moon which are assumed moving in knowl_

orbits about the barycenter. The momentum P conjugate to position R relative

to the varycenter is just R, the velocity relative to the barycenter. The first

Hamilton equation expresses this fact, and the second, together with the first,

yields the equations of motion (1).

In this formulation two fixed points are selected for a fixed earth and a

fixed moon. The selection of these points is to be made so as to minimize the

non-integrable portion of the perturbation equations. Thus, denoting positions

relative to these fixed points by stars_ the equations of motion are

R_ R_ (.R_ R 1 (R_ R 2=_ __ -)r13 P' r_3 r13 \r_ 3 r23

and the Hamiltonian is

1 p2 _-_____ ___ + _ r _"_2 r'-H = _ r*l r*2 r*l 1

The Hamiltonian can be expressed as the sum of two terms. The first is the

Hamiltonian for the two fixed center problem

H E = _ r*l, r* 2

14
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and the second

1 " //, 1 1

is the perturbation Hamtltonian which may be written in the form

H1 /._(1 /, _ )_.1o_o}+__ 1r*20 r20

R* 1 RI'R 1-I{,E"'_'
r* 1 r I r'23 r 2

dt

Perturl,ntion ,,quations for the initial conditions may now be written as
I

d
¢

dT Ro(t) = gradpo H1 0-gradpo J _"'f dt

(51)

(52)

(53)

R10*d K

Po(t) H 1 u_d'-t" = - gradRo = ,3
rl0

R10 "_ ,_R20______*R20
_/ 3j+ gradRo_{"" "} dt

rl0 +_ _r20,3 r20

If the terms involving the integrals are ignored in the perturbation equations, one

obtains

Ro(t ) -- Ro(0 ) (54)

_o<_>_o_°>+_-_o>_ _02 _0)+_0" _0 } ]
= L__r10,3 rl0 \r20,3 r203

since the first of these equations implies also

Rlo*(t ) = Rio*(O ) Rio(t ) = Rio(O) i = 1, 2 (55)

Selection of Fixed Positions for Earth and Moon

It is not easy to see how the fixed positions for the earth and moon should be

selected so as to minimize the contribution of the integrals to the perturbation

equations (53); Examination of the equations of motion (48), however, suggests

that two cases should be considered as follows:

15
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1)

2)

Motion from earth towards moon; fix earth in its initial and moon in

its final position.

Motion from moon towards earth; fix earth in its final and moon in

its initial position.

The initialconditions for the two fixed center problem will then be determined

by the condition that initial position relative to the barycenter is unmodified and

initial velocity relative to the barycenter be determined from Eq. (54), with

momentum identified with velocity. The solution'RE(Ro, Po(t), t) and PE(Ro, Po(t), t)

for the Euler problem will then be related to that fox: the restricted problem by

RR(Ro' Po' t)= RE(Ro, Po(t), t) (56)

PR(Ro ' "Po't)= PE(Ro, Po(t), t)

where R R and PR are to be interpreted as position and velocity relative to the

barycenter at time t.

RESULTS OF NUMERICAL COMPARISONS

Two methods of approximating the restricted problem by the two fixed .

center problem have been obtained in the preceding two sections. In addition to

these methods, three others based on the formulation in the rotating system have

been considered. These last three methods are defined as follows:

!
!
!

A. The center of rotation is taken at the center of the moon if the portion

of a lunar trajectory to be approximated lies in "moon reference" ; that is, if all

points on this portion are within about 9 earth radii of the moon. For portions of

the trajectory outside moon reference the center of rotation is taken at the earth.

The method has not been applied to portions of a lunar trajectory crossing the

moon's sphere of influence. Thus the values of o_used for method A:

earth reference

! ¢_= --_, moon reference

are the two extreme values noted in the discussion following Eq. (40) for _.

16
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In addition, the parameter 5 is taken to be zero.

B. This method uses the value of c_ determined by Eq. (40). The value

of 5 is taken to be one.

C. This method also uses the value of (_ given by Eq. (40), and 6 is set

equal to zero,

The two methods already derived are identified by

D. The method in the rotating system.

E. The method in the inertial system.

F. Finally, a sixth method was tried in which the effect of the perturba-

tion tIamiltonian in the inertial formulation was neglected. That is the initial

conditions for the two fixed center problem are to be just the initial position and

velocity relative to the barycenter.

The comparison of the effectiveness of these methods was carried out as

follows. First a typical lunar trajectory was integrated with the effects of mov-

ing earth and moon included, but with all perturbations due to sun, other planets,

oblateness etc. eliminated from the program. The integration was carried out

by the Republic Interplanetary Program using the Encke method. In this program

the earth is used as origin in earth reference and the moon is the origin in moon

reference. Various points on this typicM lunar trajectory were taken as initial

points and the two fixed center approximation was computed at various specified

later times. Tlds necessitated the transformation of the initial conditions associat-

ed with the various methods (relative to the origin A for the rotating formulations

and relative to the barycenter for the inertial formulations) Into equivalent initial

conditions relative to the earth or moon for portions of the trajectory in earth and

moon reference respectively,

17
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The base lunar trajectory started at time t=0 from about 6590 Km from the

center of the earth, reached a perisel distance of about 4350 h:m at 7 1 hr. :rod

reached a perigee distance of 8174 Km at 153.9 hr. The entry and exit from moon

reference occurred at about 58.7 hr. and 84.1 hr. respectively.

Tables I, H, HI and IV contain some typical results from the numerical calcu-

lations. Tables I and IV are for the earth-reference portions of the trajcctory on

the first and last legs, respectively. Tables H and HI are for moon reference

portions approaching and receding from the moon, respectively. The left hand
I

column contains the initial and final times for the portion of the trajectory to be

approximated. The deviations Ax, Ay and A z in kilometers for the wtrious

methods are entered in columns headed by the corresponding letter. These

deviations represent the difference in the rectangular coordinates relative to

the reference body, the values predicted by the various methods being subtracted

from the values given by the base case. The column headed K, which appears

in Tables I and IV, give the deviations for the Kepler problem. The last column

gives the value of t_ determined from Eq. (40) for use in methods B, C and D.

In Table V the x, y and z coordinates of the vehicle relative to the reference

body are given for the various times which appear in Tables I, II, Ill and IV. Als0

given are the distances of the vehicle from the reference body in earth radii. The

distance of the earth fl_om the moon is a little less than 60 E.R.

Some general conclusions on the relative merits of these methods may be

drawn. First it may be noted that methods A and C are practically the same ex-

cept for midcourse portions of the trajectory. The reason for this is that except

for such portions the value of tx is such that the origin is nearly at the earth for

earth reference and nearly at the moon for moon reference.

To summarize the results, then, for the methods described in this report

18
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A and C are best for long range on the return leg.

B and C have a slight superiority for midcourse.

D is best in moon reference, on the first leg and for short rm_ge on the
return leg.

E and F are inferior almost everywhere.

The Kepler problem is superior to all of these methods for short to medium

range in the neighborhood of the earth and moon. tt fails, however, for long range

and mideourse portions of the trajectory.

CONCLUSIONS

The results of the numerical comparison made in the prcvious sectioa show

that the formulation in a rotating system is best suited to the approximation of the

restricted problem by the two fixed center problem. This is not really very sur-

prising because in a rotating system the earth and moon are automatically fixed.

This is achieved by introducing terms corresponding to the centrifugal and Coriolis

accelerations, which are interpreted as perturbations on the two fLxed center

problem. In the inertial system, on the other hand, fixed positions for the earth

and moon had to be selected more or less arbitrarily. As a consequence the

perturbations from the two fixed center problem so selected depends on this

selection. Thus approximations have been introduced before the problem of

approximating the effect of the perturbations can even be considered. It would,

therefore seem that a rotating system, in which only the problem of how to

treat the perturbations appears, should be the proper choice.

From the numerical results shown in the last section, it is evident that

the problem of treating the perturbations is far from an easy one. None of the

numerical results obtained can be regarded as satisfactory, or, in fact, as

fulfilling the expectations that one might have for the theory. Nevertheless,

there are a number of reasons for expecting that further development of the

theory should lead to useful and interesting results.
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If, for example, one considers the determination of the origin for the

rotating system, it is obvious that the method used is fairly crude. The sum

of squares of certain vectors appearing in the perturbation equations is minim-

ized. Evidently, if the sum were a weighted sum, different origins would be

obtained depending on the weighting factors used. It should, however, be

remarked that the present determination yields plausible results, e. g•, in the

case of motion of an earth or moon satellite, one would certainly expect the

rotation of initial conditions implied by Eqs. (44) and (45) to be about the center

of the primary attracting body, or at least about a point very close to its center.

A large rotation about a point very far removed from the center would obviously

drastically distort what should be a stable orbit• Thus, the property that the

origin is closer to the earth or moon according as the portion of the restricted

problem orbit under consideration is closer to the earth or moon is a reasonable

one and shows that the theory is at least qualitatively correct in this respect.

For midcourae portiotm of the trajectory, one cannot use the satellite argument

to suggest the proper choice of the origin, though it might be conjectured that the

origin should vary continuously with the portion of the trajectory to be approximated•

It is possible to make a few remarks on the parameter 5. Reference to the

perturbation Eqs. (23) and (24) shows that ff 5 = 1 th_ non-inteurable terms are all

integrals from initial to final time, which therefore have zero initial value. It

would thus appear that for short range predictions, results for 5 --'-'1, that is

for method B, would be superior to the others. This result has been observed

for some midcourse runs.

It may have been noticed that the perturbation term _ • R A x PA in the

perturbation Hamiltonian H 1 (see Eqs. (15) and (20) could be treated in the same

way aa the RA • A 1 term. That is, a factor e could be introduced in the same

way as 5. This would change the rotation in the initial conditions, resulting

from integration of the perturbation equations, from an angle _ to an angle

tot. To actually introduce the ¢ and obtain a value for it in the same way as

for 5 would not be easy because the terms in (1-_) which would appear both

inside and outside the integrals would be far more complex and difficult to

treat than the corresponding terms in (1-6).
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To summarize, then, the various methods so far developed for the rotat-

ing system depend on the selection of four parameters cz, B, Y (determining the

center of rotation A) and 5. At this stage it appears that some sort of a param-

eter study using variations from the values of the parameters so far used, and

including also, perhaps, variations in the parameter ¢ defined in the last para-

graph, might well lead to some useful approximation formulae. There are many

ways in which such a study might be carried out, for example, by using weighting

factors with the vectors to be minimized, by a systematic variation of the param-

eters, or by the development of some sort of interation procedure. From the

above discussion, it would appear that B and yshould be close to zero, that E

should be close to one, and that ashould vary approximately according to Eq.. (40).

Only for the parameter 5 is it difficult to estimate a value except for relatively

short range predictions for which one would expect 5 to be close to one.

REFERENCE

Is Schulz-Arenstorff, R., Davidson, M.J. Jr., and Sperling, H.J., "The

Restricted Three Body Problem as a Perturbation of Euler's Problem of

Two Fixed Centers and its Applications to Lunar Trajectories,,° Proceed-
f

ings of the National Meeting on Manned Space Flight, Institute of Aero-

space Sciences, 1962,

21



|
i
i

I

i
I
I
b

I
I
I
I
I
I
!
,f,
!

0

0

_ 0

0

_o

_o
rJ

cO
_0

0
t
!

N

tO

tO

i °

,dq c_l
,-s L'.- _

000

• • |o

,.-q _,-,q _

t_-O

I" I" I"

U_ _D Cq

<1 <1._

p.q
I

0

_0

_0

0

I

tC_

I009 _-
C_1 0 _0

I

I I I

_0

0
,,,.I

!
0

_0

0

!

_,...I _-q _=_
I I I

,-q 00 0

_, _ ,._
_ c._ _1

_0

_0

I"

CO_D

I I I

III I I

O_100 O
_-,40.I _-g

I I I

22

0

I
O

_P
t_ O_1 oO

_i_ _-q _.4

I I I

0
u_

I
0

i_O

,.=q
0

I

! l

I I

I I I

<I <I <I

0

!
0

r.D

c'O
O_
O

I I

c_ Cr_ C_1
O_ u'3 o_1

! I

o'3

o3o3o0

_D I I

O,1 t'.- _
0 t_- O0

CO
t'-.. 0"_ o')

I

c



I
I
I
I
I
I
'1

I
i
I
I

I
!
I

I

[.,..,

,..=.N
0
0

©
,....,

0 .,.__ (._

o8

0

0

0
0

0

0
0

0

0

0

0 0

000
O0

_00

It

0 _1 _ 0

_' t,'3 _C 30

C-- _ oO

oO CQ oO LQ 0 U'3 "_ C'--

,-4 I I I I

i I I _ 0

I I I

oO 0 _ Lt3

O L"3 L_

_'_ L'--
c',) C_ i

I I

L'-- @'_ _ _ _
_d_ _ ,_ C_) _ ,'_
_4 ,-4 ,-4 I I

I I

I ,--4 l r.D _ <.D
I .=N _

I I I

,-.4 ,-_ _ _ 0 u'_
0 C_- l "_ ,-..4

I £'_ t I I
I

,-4

I ,-4 I
I

L"= _ _- _ ,'_ ,-4 _ 0 u'_
_-_ 00 _,1 _ 0 _ I "_

I I I I ',"..I I I I
I

<i <I <I <I <I <_ <I <I <I

I I I I

23



I

I

I

I

I
I

I'

©
0

,-.,
0

"'-'
0

0

0 m

©

_m
b-

<

b'- CO ?] [-.-. C_

t_ L.": rf. L"?

03 GO CO I>- b- "_

CO _C_

CO
!

0 G'_ h-

I

c_.O C_ 0
¢..0 0 ,-I

I

_0_
I _-_ I

I

GO b-

I _ I
I

C_ G'_ CO
Oc'OL_

|

_- b- '_ .._} L_ L_ t_- C',_ L._ b- _ t_-

I I I I

I _ _ _ _ _ _ _ _ I

I I I I I

(._ CO

,-4 I I

h-

i I I

I _ I _ _ _ _ I
I _ I I l _ I I

I I

I _1 II _1 il
I I

L_. O0 _0 O0 O0
I I I I I I

24



I
I
I
I
I
I
I
Ib
I
I

[.,.1

0 0

el

0
0

_8

I"

tl ,,_

c_

_e4_4
! !

!

I

I" I

I

t_

00_

!

!

o3

cr_

c_

c_

i°

_ t
!

oou3

r.o c,3 _,-

t_3

0

u3o_
I

!

_fl It,
t I

I t

I

_ _ _11

I

o

_ I
t I 0

25

_D

I,'-4

o

i°

1-4
c_
e-I

i°

o_ _ c_a

oc_1

t
!

OI I I

t

00_ 0_

I

_OI t I

I

I !



qt

Table V. Lunar Trajectory - Position Relative to Reference Body

Time in Distance in Reference

hours X in Km Y in Km Z in Km Earth Radii Body

0

1

10

30

50

59

6O

66

71

72

73

75

80

84

85

86

100

120

153

47 6300 1800 1.0

-19000 -8000 -10000 3.6

-45000 -100000 -46000 18.6

-53000 -210000 -82000 36.8

-51000 -290000 -103000 48.8

50000 22000 482 8.6

46000 20000 187 7.96

24000 7300 -1500 3.97

1300 -3700 -2100 .70

-5000 -3500 -681 .96

-10000 -2100 1080 1.62

-19000 1100 4450 3.0

-38000 9100 12000 6.4

-52000 15000 18000 9.0

-57000 -329000 -97000 54.5

-56000 -327000 -95000 54.2

-50000 -300000 -75000 48.9

-36000 .-240000 -41000 38.4

2300 -13000 16000 3.3

Earth

Earth

Earth

Earth

Earth

Moon

Moon

Moon

MooN.

Moon

Moon

Moon

Moon

Moon

Earth

Earth

Earth

Earth

Earth
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REPUBLIC _ 'J..'_" "" v_.. _C2ATIOX

}_z ...... o ...... , =. , New York

Al<]ro.<i;:;m:io.tcf the i-c<-st_'icto_E_roJlem

by the T',vo-F f:.:ed ,_..._,.._-=_" i>,'oblem

SU Mf, L4avlY

in iftis repor-., a 5err_:r}_.ti.o,; Cteory oi t.-._: t'...t-L:-_cd-cent_l" problem

leadins to an appro::L .:,.ti_,:: _o_' :..c :'estrietec-;__'_c-i_c.y o,_'oble:n is developed.

It mahcs use of a gc_:e_'alizaLi_.L ,J_ _-e _.:ed:oc. c!c,cl..i_cd at },ISFC by Sehulz-

Arenstorff, D:,\idso::, :.::,_ -_.<cu:h.. :,*) The dc:'i,:n"ons are carried out 5a_ a
1. . - •cooraz.,m_e system rom:L:_ :_bc_n ._.: _ccelera:cd o:':g4:, and tke generalization

consists of :i:e. selection of tLM c_'! _.: in sucZ a wa: aa ;o .ui::imize the effects

of the ::on-huegrable terms h: d:o _ _rn.trbation c, ua:ions. TI:e resuhs of so:he

numerical calcul-ations are pre.svr:c.!.

INTRODUCTION

Tke equatio'ts of n:otion foL" a _ _hicle movirg in the gravitational fields
of the earth and moon are:

___ 7>"" 1 , _2
= - _ 3 "" S (i)

rI r 2
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\vkere 21 , R?, and _ are ti:c :.v=: ...... : v_-cLo!'_ c,: :he Vc.:Uc_e :c,c:zwd to the
- • ... , - ]

ca:-d:, ti, e moo::, _:d :: :ao:::_ _-..:,,.:_ i.: L:c:':i..1 <,:_cc, rc.<)ecL:vcO'. Lower cas'e
io:tcrs denote the ...... -,"_:-".:-- o: t[:c c..... ,:..., ........ ::'c.:':c::d:::£ vectors Ix: tMs report it

\,:ill be assumed C:aL t_:e c.a:'th .::-ci .o:; ..rv :..o.!: S in circles, ua:der d:cir

_.u.u_l g'raviL.,do_u-.i a::.CLOL_O::. Lb_U "1:O£7 Cu:::.::C:: cc:-ter of masS. T/us pz'ob-

icm is tke restricted ;k:'_:c-L.,/.v :-',. _:c::-... ...... .Lc f:-.:cd point n:ay be taken to
be d:e cc::tcr of :;:._:ss o/ _k_ L=: ....... fi :::.. ...... " .L:: :. > ;:'oxi:-:ation to the solu-

tic:: of the restl'ic_cd • ".7-.. ,.. • , - ". ................ L..5o._:.:_ !.. :.._'..-._ u. :.:c ]c:o>,'n so_utlon(o) to

the Eu!cr p:'oble::-: c- r...o /i:.:_:d c_..:,_:._ o: .{.':.,::...::.,:. kLc :.:_.:>.od ,,,..ill, in many

,o=pec_, ,.f°i!°v.. c_,=w:-,-'.... ' " _:_:_ c:,'.__c _:,_ ov :.:..:.:.::-..:.::s;o:':_, _,..x,_.so:., and
Spc:'lh:_. _) l:: C:cir ";:'OCLC:L',:. "..:v <:'O:_lc.: .... _7..:£fc_'..:vd .o a coo:'d':nate

system rota_i::._ :_bout L::c cc:::c: o.' :.:=sS. -.: "-._ :'_...<:-_ sys:c::;, ::;e Euler
])roble-ll is [:a,.c-. ;as _::c ;;1_-15 o: ;..:uc,TLirJ:.Liu.: -._wv./v. ca-,._ _ilO illi_iLt], con-

ditions oftkc <u:cr " "_ " " ". pzo;}._n:: :.s L sos 0£ c:_none:_i \-ari:_L;cs, :t is shox_m that(2)

- ?0

and (2)

= - gzu.O i_ 0 g.P0 .... ,

• ..,_.._, ,,.o:, \cc:,._r in LXe - -. : .where R 0 is the "'_'_' _ pot Tr_ ......... ..5ystcn:, --PO is the momen-

tum vector co::ju/:_'.c to _._,--' :_:ci J_ is the d[f,cz-w::cc bub.vccn the iI:::niltonian for

the rest='ic:ed peob!c::- t,,:.:co-,*_ i::rc/ral) and ::.::t for ;'.:c Eulcr problem, and is

given by

_J* : _ . 7' J>r, __ r.:_"" =0 x -,, _, (S)

The selL:rich of the l'cat:'[cr_Lc: ::.',')_L_ ..."' is _.._..:"_' !:: :ul'.-;;5 o:" :Ln o.:u_.:L.L,a_' ,",'.. two-

fixed ce::_c." '.). o;o:u::_ '.:::_.: va:"{i.:.z :...:ri_ co:.& o::_. if J_ \,,-ere zcco, the

equatio:;= _or _f'°,_ :u:d _0 could i:c h.:czraLcd dir,_c:ly, h: ti:e 5e':ulx-Arenstorff

theory, O:+-* due:, no: xL::ish a::d. :.n /.:ct, contrib.Ltes appreciably to the vari-

ation of =' :.:_c; t),- i; :!:o t.:nsc £:::c:'v:A over -,visie}: sac' ,..,cal:"*..... ._L_,n;"" extends is too
--0

large, or if cZ::c:- :::c c_._':.:: oz" t::c ,-::con arc ap')roncked closely by the vehicle

during this :h_:c ' " " '

It is :he p:::'po._e of :::]s zc ._.'s to sho:v :::::': _::_. ,:f_c: o- g>-'.' c_::: be reduced

by se!ecsi::s :m o:'igi::/o: tLc :-,:L:i:.SsyStO::: ,,:k__'::.:_.::::c ,:c:::crof :::ass of

the earth and :::con. ::: L:c co_.'ou _,f this dov, l,,.,.:.c.::: tl, c d_Ldls of the Schulz-
Arenstorff n:c_hod ,-{_: ',..,= ._o j:\_::, a_:_i the coordi:un<_ for & oo:::er of rotation will

be determined so tkat J'.:x L::d its first time d_:':v,:tive vanisk h:ltiaiiy.

9
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A ,_:" * is s_.e:: :.t:_t :k, t-.: -. ..... c_..._: :v ._.:.. wit:: :_:-i:ned initial con-

ui_tiD:tS _F.u: tii.:J±'ilS.C.£: :)_._i:..;:l¢ ....... " i.... 1......... ? ...RI,2£: :O :!XiI \vit!i tl:tprJi:lc_!

.,.._.__.........co::<[itl,x:s t:ni' . _'!n:_.i : _ ......... <. : : :...... ..... : %v :, rigid roR:llon which
is 11:_ rot:nlonxt:t c,f.tc ::'._.:.. .... c:.. - . 1 ::.:.Z::_ .svszo::: into the :ixcd

._._R.-li. "" ::i_.c- .,: S_. .... .;. ._... ........ el' : ....... i. _ l..c :&.sycClltor :]3, v,'hiC_l

:i::.ycc 2c_,ti',_:_,.__:.£:< i i....'h..: ....._, ...:_ ..........:'.,_c /_._, in inertia:

5p'.C;C, be i,k.'..'I%,SC L.s... :. SOR..L .... J._ S__Ot,i"__.., _, I_',..,::;_,_S.11 ,3&el--: froi]l the l'olatin_

5\'_,.;::1 t_ "_..u' ikJic_ SVStc.::. ill _"._. -., hll¢' _':"_,,:.1: S,_lt.'_iil o _t_,_ ._ iS 5hOWll a:

t--0 _.nd t -T.

It is ::,>v_:.s,,,1o =<_ -k_,.:tk_ :-.. :_ui<:>...-<:.:ir_d to COl:/:):erethe tl'R:Isforzltl-

if -,:: :J a3.:cs .<:o'.i.._( "..-tk .L. ix.: ...: ...... d d-:" ._t.,..tZ, is a tr_:nslation fro::: A to A'.

J:c:u=ib, -.".is :-':_::_i:.t-c:l .... .el .ix .... as: .... ,_. -urtkor Lecause it is desired to
fi:._: .;:cCi2c._tion i:-, C:< i:.1<:£ c_r.,.ltl ..:_ r_-l=:2,.,: h, ::.c earth rather than relative

tO .'_.

R_f_r:'i:. s :_ _:.in ...> :.._.. _, .t !_ :_.:n :....: t.... :'....cd ,positions of the earth
a:lc kite ,nee:: ,_k_.... _: :: : .... . 9-.::_. : _ t...::t c: t.:,_..-:..'t.: a::(: :-noon at time T in tile

fixed sysR:n:. Tiles, u=t :.s it: :1.: ..txvce::_,_.i" c:._u,

--:0 _i 0

and (66)

: ) :: :b

o obtah: " "..... - ..... " "--._, o..__,kill.:,-:l...._ _.n.. .- O;3xX:__.,. :,V :. i',,._:i,):: Ok ]_ throtl _T

aoou: A " " " " " .s _ - .... " - of A _,rou_h o; T about

E, Tile vector :--, rclcti.,= :o :i, i_- gi','<n b a

, .- .. : . (_)

d::::the chu.u_c in A.. induced "sv:::'ok:tlon <,fA_ th:'oush -_T about E is given

'A = t& (: (T) - L (0)) ., (L (T) - : (0)) (68)

=o t:::t finally,

R = .... ---:-- - (o9)"-':o _:o <c_ . )ik(T)- _(o))_ ?(L__(T) L__(o)).

_k= Lefore, _P, \vhich ::kay no.v :k. r_.:.nii'd.adas RIo in :i:efixed system, is unn:od-

i:ied. Th6 r, vo-fixed c,..:,:__.r..... :_:,.-.,.,1_,::, with R___O and :_i0_ as imtial conditions with

O'-.'C al . ,. a:'.:emoo': fixed at I. (2) r_: ....,..._...._cL:_rLh, S:: .... ' produce, 2i:::c_" _ood
L:?pl'OXilll_tion tO t_._ r_sli'iCt_<: )_', ,_::1 '"'" : ":'_ "_. " " " " , \,it...,.,_,_:. col:dillon £iun". ant: _f0 and

- init_<,py . , .t::c moon _ .. at I i0) _:-o\.d_d _ is sm:_li _::ou_':: so that t:te second and

;::_n_: order time derivati\x:s c: J, produce _ ::egli_fble effect.
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A co.::IreP.t on the rcl:xl xt [r. tv,_ .;.-_ lit.: :'r.o.t:<:ttt<n \color _-_G' c°:'Ju-_ate to"

_!%; :n,d ti_c Vwlooitv \@L'%L.Z" _: .... ..-_'*'..._ _ .:_<a tO indicate that tke Lm'rvcontor is

""....' o=--"_.S_-__"of :hL: rotr_Kn_ _._-_..._ -, " .: ... i:- ,xq_.r. Recalling. tl'e dcfh'.itio,", of PA

i:'. Eq. (ib), it fcll,;.v:, tk:x

.t-

_ ..... _61)

and :to::<..; i; -_- _-.i:.: ,i. :i.. ',.c!<.cl .... ._tor i,. " :.:,:eci system wid: its co:npo'.tc_:ts

ref__'rcd :.-. ..._ ,:-._.::..-.-_..: .... ._ :',x:.:i.., :.:.:e_. -_.:.:._._ :" kas been assun;ud that tl;u

,,.',c,. a:-,,_ ,,...:_.,i;.S <.--:t_'..,_ :;;, ........ .... .:., ;_. _ - _, it follows that

kx %J

,....-,x'_ ]li] i._ ::: :.._. :% .... .<.=::_::.. :. ...... ti;:.t :_:._'_: .k:-.ote rotatin s syst,:m). At

t-:::c T.L; ::to _- ,.c..:o_' -_, " ',.:<k-_/ -.u:.twrcloclcvise it',,i ;1 beco:ne
• o

::to !33 vector. :_ut :::.:. :._ u__: .... . =:_.._-_oz::,,_. ........ _ has been used to translate
[h@ £v,'o-iZ,zOd L'_!ilc± ..... '_ : ...... :. "" _<__ ox ........ _,. f_',,n: ti:.:_ retail:iX to the fixed system.

T?us, ; _:..... b:_:.q._,.tt_-r is :...; x'.._in ,_, .ku rou_tlng system (i.e., C_ : 7 = 0),

tke 'oz'e=cri:xio:_ for t::_., a :,:x'_,:.J...::..i,_,:; i_ tl.c ±u._,_,..i.'::_:

(i) _ _'

--E : _ -1:_ - (- 7)- _ _0))

be the displacement of tke earth i:_ tlntc T.

(63)

(2) Sot

and

--ib -ic,

since a transl=Non of the orls-in v,"_,;: ;tot atfoot tkc \<.lucity.

(3) Fix tie :teen a t_" (T), that is i: t its position at time T relative to
the earth.

(4) soi,.,_, ti:e "..',vo-ii:.:ca c¢.t-.tcr '-ro%l_:-n ".,irk the moon (£>:cd :t !. [T))
and " ""_ " " . ,lnlc_a_ 001% ;i[!O,IS 1!1( ' L_!.(_[ i,'. lO oblt_ir_a:. _.'].]Ygx[Ir*atiOll._Ltiille Tlo rile
restricted _?roLicm '"s*n :ritiai conditions R, altd _10 and moor. initially at L (0).

• . • , .
The =:t_:l\=i_ _,x" a system z'otauno a0_ut any point o:.:cr it.an the bury-

ceP.ter is carried _u'. in a simil_r wa!.', but die algebra is rtore cotnplicated.

The orizi,'} of t!:c rok.tin_ sj,ste:u is t) 0e tire point A, defined by Eq. (4), with
_z and 7 det_._rminod from Eqs. (3_') hnd (60).

In Fig. s, :h_ v_ctor .% a_td the original and modified initial conditions are

strewn in the ro'_ti:-,_ _)'stem.
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APPLIC.<<I, i< <_-'_<_..i .I.IU.:O 2)

Tire' ,:;o,ii;i_':=t .... " - _ ............. tl ............. : ..... ::ccJ, i.t.( see':ions
\Vii,5 e'cl.l'ElC-_, o_<_ 1:2 E. 2",)LLa_,l\= .: " l.c .... :.;i(i i_ ..- ......... -:.:. .... . , .l':..+Ni',_l':li lJll_

modificatl _:"..fog t.sv ;.: tl;_ c.,),_: ...... :_ __'.-stw .......... - ...:__" .... :cu._'v ;t',,,;':.:n, To

see how _,us n:uv )_ Jo::_;. e. _,,, :. :,< :i:c ..•.... :._..-.: .::.: -..:v _,:-.: .. i.- at :L_ bury-

center, i. c,., c_ :_::d " :._'e }0,):il zcl-._. ::.:.] t!::.L " __: ...... -,. :',,::.:i:-_ :,:s_c.:.s are
coincide:t: ........-_ t - 0 "" .a v ..-.:. i.: :.:i._ c:..:_ ..::.: :: _ _',:,-.-..-.. .... _-.._.,.,- ,>'bit

•_p,,le @ h.av_,t,L l,_c _)g.."v'cY._v ,:'. .:-. .... '_=,. _.IIC SL._.\.. z'_... t "., _i_.c c'l..i"_ll L:;],i l]lOOll

-,_-Ai£ ....as if the ' " .- --" ..a ......... v_........... t.:_- c.._'t.: ;,.:u .,<,,,;.: .:..ca ,)ecn

rotated c,,u.:tul'c[vc.c,,._-_ l.;.',,- ..... : .... )ut til_ _ .. - c_.;:c:'. N...,\.-. t[.c :.::,,[v u is

_-T, \vhc.t'e Z' _._ th._. t..:.c ::t ..l:i .... "..... co_np:._-..- :-. :s t ..= ::n:.de. lie.tee, i_ the

car2_, :i__- ::: _:: ....... u.,- :,. -..: ..... -:.tcr oz,_ ..... :v _-.><.,::::£ t,, tl-e ntodified
" " ,.1= .......... " - " --"-, :ire earth a::dinitial c ,.: .... . ._ _-i_:,.. " ,,untc._,'c. ...... _:_ -.:='cu_:: .

nloon wi_- c.g_.'.c._c ',;.it.: i.._.I ._,__..., 1_: at ti_::_ "i" --- t.tc f!:<C d S\stC;*I. [.tl',Li the

])oinI, COF]'v2S 3,51;._.[,-_ l._, -_.:._ _ ,,:. 1._£ -V.•O-_iXc., £'c,:ic-" 02._1 iS t,-.c Ollb i0 }3c coIll-

pared wit.- u:_- :_2:;':c: .... J:', .... ,-.:. c-.--uud ou _, :.. t..c i.:.:c-(: _-,.'_tc,:-_. :Coruo\er,
this countc_'_.[,,_: ..... -_. _._-:., .... : .... "...t_-;o:-n.. ..:_- . ,o-:ix,_. ce::tcr pro})Icm,

......... ,h ",- ' . - ,-- • " ' : ; : ,, " " "\vith IllOC, li_v=., :i.11.-._ Cva.L.,.L..A.: ....... "i:1 .......... _ ............. _,siilO:_ 11110 1_11t1

with umnodlzlc_, i.:,t ...... _::=n:o..._ : ..... 2arth a:t,..:'OO:t - " t:._:-" ' positions. There-

fore, for G at: i - ',,,'... ::c:'o. tkc. co::: :.r:son c:,:: so nt:=dv...,s..-.g t.:u interp_an-

et.ary progz-a-n .sv :.::::t.. :.:_...:_s:: it-. it= T p'oe:tton and :'ctc_'_u.._ <'.e ur_,nddified

initial condo:lone to :Lc co,o:'d;.:t.:_, s'a'stw:n cwn:c±'ud ::t :ire ,;a_'tk at time T. This
......... t.a. co,tc::<ons are referred to theis i::dicatcd _" F-g. ' '..k_-xc _..,: :...',::mad 4,_: :.-:

• " ' , ...... : .... :. _ conditions rc<_=:" to the eurm at t = T. Theearth at t : 0, a::u t-tw . ..... ,.., ........ a,
initial conditions are. fL\cd.
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1

±i0

-- :] .-

....... miO

kj _ "j

0

_U -u

7

"L

(SS)

=¢

whore use if:is iA:_.:I !r.ad_ of :kc i,,cL L!l<t

_; , < (59)
--±v - "m_O --"

Usk:_ Lq. (_) once .nv.'c, _::_ oL::_ins :b:" lk. (50)-

_,-{ (o'L - _ ) - _.:.------7-,)L_10 -- " /' l_ ......

-- -- 7

<. ±_ "'/ I.

-'2-

. T_ "r -

-_!O-(O_ :.'L) -a( a

k

, I ,) .) .)

•> --.._ (GO)
- t

t--

_', : : _:
) _"

7
--- °

--7@1_ I_. ) =0

If Ecis. (.3_):_:::[{.,,'4arc sob,cd ::_.''L:rod ) ,.>.....;t ='_is <_krmircd so that dze

following :x'oa._::iu,'c si:o<i,i _i,-e :_:: :,:,.x'oxin::.:iOtl :o Lk_ restricted orob!ezn valid
. _ , , • .]for a t£::u i:::clwal Y,nosc .u:..:.l.,..._.:c:son :1:<:._i,:co: J> and =iv :':.reof variation

of RIO-' and *-iv"_'_' Th< ._,'oc.c<iu.:< c:_rried o..1 L. lkc .-o_Ahl_- sysR:!n as follows:

" ._R] . ".',:o<!iA" _ • ..... " ] co::.[Xi..:s of tkc :'<:_ '_uclc<. ,_,_,_.czn oy .q

c:ocb,,,_se r_tr.tion _'" ", ', _c T :. ,,_.:. :'.-c :x_i:-: .::, and solve

the t\','o-i'ixcd c_::t_:" oro.lem witk ti:_._c :nodi:L:d initkti

co:Riitions q" ..... -J/ .... z : " '. ..... _, ;.. _'_i aria _ (T., :¢.',c:: b,, t::c two-
-- _% ..

fkxed ce.uter _roi)k::_, skould matc': -], tT) siren b) the

restricted probR::n ,,.,ith unmodified :::kk.! c,o.:clitions.
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on making use ofEqs. (S) and (12). Tkzs, tk_':':i:.l:_rmofEq. (51) will be

pi'oportional to

-'7 --7 /

-PA0 (_Z --,i_ ) -:- "(c= :TL )-," _
-- ' -- -- - C, "-i-" __ ,_

where the terms in c_,, i-av_ c:.::c-.d _.t.

(55)

Again using Zo (-) tk_ fi:=.u :_i::_ o; Eci. " ',viii involve• , {,o_ )

- -._0 -lu

- / -

,- )_-.L

i

;7-, , ' -- ,_ 2. /

_ j_. - t._ -- .0 -- _

(56)

and the second term _,_,_ be propo cciom_i to

so that Eq.

"" _i/0 - _/_ .i
T- ] .. - *,' ---- - _ *-"-' O

= - mi o _(_

-'7 !

:i i_ -/ - .i 7-
-- .o --

(5!) may no',', bc writt_.n as follows:

fz
! -(a ---3 _

rlO

" ] -

- '! " '' E

..... 1,, - .3 -iO -

I/

3 _
i'•)

-0

--7

-(: - _)R t
- - 20

b *-'20 --

(57)

(58)

,,J

,4,

• -- '7

o_', collecting terms in o' and "y:

/ --

i
= 0

13



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

DETERS_qXL<TiON 01: _ AND 7

In accordance \rich the oonclusio:2 of 212c 2_s. scc'_ion, cz and 7 are to be de-

tel'mined by the equations

AO

and

W _T

"-=::___ , "-'- .,x : . -' _°, _ • (a T_ -7_)=0,
..> Oj --..k 'O --

it'. i"

(51)

so th:_td_e first Uv,,J t_P:-:_, ..,_.- "d:_: . ,,,_-/ se_'i.._ _.: ,;.:'_s..,:: 6: J.> M _va.. (.;-7) vanish.

The pPi.mes _....c Lcu/. o.':,:<_(_ ...._. :.30),.:2c!,._2.:_<c::use t:te mlt:::±\alaos of

_' :llId -D' r,.:£:_.c,2cc[ us ,.;:/,:....<_. ,:.rt_'...__t_:':..,J."".12c i'_stz':.cL,.;d lJi'o[_i,...:ll,[_rc

thu initi-d \':.L;_s o: <:., :'_ - " - " "cP" " " " .:)_,.c.L_ .... ,_...... _," 1.2,_ _-'i'_:Lr.2,._i"1 LhcOFCP.I t-} .'<O\V,

_AO alad :-.-'.up" c,_;]c...; _:: :::c =c:<c.i_:: o the :;o::.2 .,, z;,o that, 2or :'.'2e (idtez'nlJJa:ition

. , 22cV "" ......o£ Oz and ? "rozn !£,. s. t6b) :.22i _.3-,, : ...... 2.. 2,/ :'_,l::c,c_2 ;,Q" t."lu positlon nnd
• _' _ " " !t_ti','C ' 210 .... 'nlomentun2 oz thu ,_.;nc._._'_ t<__-<: )o.:-t 2::(.ctC:kCe:tto£ _. A paiaicularly

compact foP.,n is obu_i:acd £or Ct_ eL u:.tions of & _.:,d7 by rcp!ac "_ol,,_ P by -Pi0" - --A0 -

and _A0 b)- _I0 or Q)0' as ,_;_\,:. First, since £rom Eq. (19)

_.<o _ -.-_u ' (52)

for any point A fLxecl rcla-ivo to uaPth and n".oon, it £oiio',vs th:kt

"-2-

Pi0 m20 _',x-" (53)

Therefore, since: L. t.2c _o.._:_g system the vc!oclt/ o£ thu vehicle relative to the

earth is the same as that reiativ_: to A [ooth are £ixcd points in the rotating system),

PA0 : :°lO -_.D ;' I _7_.:0.,,,.- 5_I0 )

/

%

/

,2
(&

,./- # _ . 4__ ./

= 2io -{_"
/

" --- 'L " _4 T
v'- L ,-/------ ,-,,

(54)

12
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Application of the Arenstor: t:co:c::., now yi_:iJs

R ' rad o .' - -: - g o.... ..x ........: &) (48)-.-_0 - -.:u o .....ry
-. - "; =-:\ 0

m.qd

as the dh:cuc;.<i:_l cqL;at-,J::.s ,):" L_- vari:.t: .... ,. - =,.,o-_k.:L.:I cotter inhial con-

ditions, which :nu_t b< "..(l.:,:_..i -.: :,.c t',, 0-.-,;_ " c=:,:c:" .-:oiution ia order that it

llltl}" OOCOi;]c ;.c SOlhliO;l Oi l!._" ;'_': /.'Let, ,; )/'v.-...11.

ic:, ,7_,. of course. J, Lc,cs not v:::..isk :tncl it is here that the selection

of the :)chit A c.:',t_:,'-. E\cr:. t.:r2.t oi_ J.;_ n.\ui'.,_s e:tilc.," _p,,] or --._P0' which

-" " :-. ....... -'- _ * A, so t!mt this i;of-'tt s-ouiJ be selected sodepe:<; c;-i _;lc .-,_.._o.o.. o. .... :.....

as to :rh:in-lzc the, co;;trib'<:io: t o: O.) to dr.: \::ri:tion of the i.litial co.uditions.

This could be <!ore ; \'::r!,_u: \vz.)'s. I::as:t:uch ::s the ,Tcsi=ion o: tile point A

depenJs on tltc two :):.r:.t:tc_cr_ -..... __ and )', it is _ vident "...:_"_ only t"o,, conditions
call _3(; !ill,_osc,.i oli t,:i,.; _v;-v_<;_._.i Of _. Su\_l'&_ s,ich • '_ ::*_ "-co .... • _,o,._ suggest them-
selves immed:.:nc_.

(I) Dctor:ninc & anli V _o that in _.:,r Cte co::stn:',t tc>':n arc[ the

coeLieie ",, of t van:sl for the L',iti:-A VLIUCS o: "_ " ar, U T)'

(2) Det_.k':tti:'.e a trod 7 so t!mt J._ v:.niA1 ."or t:0, with k:itial

\'L.]LIL'S Of r_ / ' 7"/=,,_ ant: _-, , and _.i_o v:nlskat t:T, with the

for.tied ,",!ues,.. of _A0_;" :rod -:k0P'' (,,:terntlred by. Jl at time T.

" " ' / that _"(3) Dct_.r:nLnc a a:,a so t,.c squa:'e o_" J., zs minimized
• . . < .ov_.:, ti-c t".::-,c ir, te_wat 0 to T, usn-:g e_Lur the h;itial values

of _,,°" . and _" or their tin:_, u,;punuen_ values determined
-._o :At)

1)':'Jl o\wr the !:it.:'val.

"' ';: ' : ....... a ,,,_ that t'.:_ v:.lZ!/tv of the ::.pproxhnationThe first method k:.s _nc ,..- .... ,...... _
would deteriorate ,;_ ..... ' is\. _._ t:.:llt', t.:;L: Lilorc llO ._ _'.:Ot',S \V&V_ O- e_tilllatil]o" the

duration o£ x.....a:,u.r,.. TILe ot'.:vr r..vo method_- l.:.'..c -u:c disadvantage that, if the

time interval specified is too long, tile ai)proxi:t::<i,_n would not be valid, even

initially, and ag'ain, a criterion for "too ,nn S zs n:".ss_..g. It was, therefore,

decided to try the first method, which would give some insight into the duration

of validity, and might very well produce results of practical value.
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:<]pro.'<izt!aLc_ol_i_n il, :..;,v,..v_,:.
sorios in _"_ '

g :J (o) + J (o): . :

:g* (0) -g-(_.,t - , ,_ -

;is :1 power

t

-3 " " "

.)

,-, . ° •

(4i)

g_l'_ Eq. (40), ti:e "..... '" ::.tire, is

"_ " ") _ -- i{ / .),' .- -- . _ . 7- ]? / .
5 = .:. 2\ =:. "t_ r.__ tG_ . __- ' , -- " -7".\ L). (42)

Now, Eq. (=2) co:::::k:s th::_ dc_'i,-:.:b.-es {n 7'.._:, :':_' :_A' v, hich :n:O' be

elimh:xtcd bv_ ..u_-..a.........of the ..-.-_r.... :.::c,._ eqc::tio::s t;',;) for the tv,o-fLxed

center prob!cn::

_L" L:') /

J:- " PA *-A -"-: ×( a a )- ,3 -A - - "
i', Y., .

i

(4a)
"-L.

The first term in if:is ec.uatio:', \ ::::iskes. i.:v-:iu:,.tion of J 'and J at t:0 yields

!

Y(o) : a*(o) : -'i_ • -,_9" ' PA0

-g-

", .' • ( & __ ..*/ T). (44)

and

Setting

- ;::' ::G " 7

J(0):J_(O) :-- q' ., ( -, ,vv) ,C KA -(G__* *,eL)

/ I -

t_o)

AO (-'_)

and

, -- ;/ 'a'
<: 0 0

J"_- u_.3 _AO=""(c'7:''/---L) -tn-.,.,0_(-., 3 +: 3)
rio r20

- ") t_L- 7L) .... ,
b :._0 -- -- _

(47)

so :L&t

J* = Jl * J2 "

iO
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.......... _-- "" ' --u' ) OOP.S2;A',_L__"

tl',e solution o- a ")ro:.2<.:.. v,-ith ii.=./.i2c_'.'.i:.2 J 0%, P) ',vhilc

R'@ o 2 ........ " '_l,< _ ]) Cu.-;>,L,LLILO %:lC aO,LL_lO,1

of a problem with2£.,n2-.t)n2:,:2 .... <L2', R") with

and

_R@o' ->o' oi = __;:-.

--P_o' P6' -_22 (_0 2) '"-- [.2

-- k)

--U

(37)

then Z: £. <;56, a:',..-:.,..:.Led. .v/tk £.',, ,,.j.... and --P0(t) , de-
tern:Lied by d2c o_u=t.o:.=_

;> '_] :-'"2"L(:. " {Li0 :_='0 k°' _ _) _ - : *-O' t)
20

and (3S)

P0<t ) = _ £rad2t _
-- U

\, ;i(3rC

_< (-R0 P ,) ,

J-t2', o,] :_ ,..,' P')-J'kR' D"; J* ;2 ,£)O,t)• _ ±. _-___ , _ -- , __1 U

\Vl-crcvcr ]". a_.-_62P_ ocour on dlc ri£k2 222:d sidu £;_ a re-
--U --U

Stilt of '1" " " ::-""_.,u _z._ ...... t o)cr:,.tions, they arc to be replaced by

R0(t ) and P0(t), r_-spcctively.

This theorem has been proven !iA :'enstor£ (2) 2: am unpublished note and will

now be applied.

(3D)

To obtain the differential e_N:_tions for _Ro(t ) and _O(t), J- must be

written in ter:ns o£ R' and P' associated with the two-f/._cd outer _)roblem.
*-'A -A'

That is,

Y=a( _'', _' 'C_',P'::,' *--A) -J -A -A)

I

=-2 • R=. , -.-_ .a #.)(_ EA "__E= _, -A '

(40)

where J t_' .o .......A' :A ) is <./=:me:el /tom Eq. (31) by renlacmg i_, and P by the- " -A -A

• --/ 12_correspondia2g prin:c,i :u:::;t2ties, and a"@A, -.P ) is give:: bv Eq. {3:J.

rE is now necc. s.<.:.:'v to c,brak; J* by expressing J- in tc_':r,s o£ the initial

uonditions of the tv,,:,-/b:_,d c_,nter p,='obiem. This is very dhficult to do ex-
actly, .2s the so!utio:-(;'_ o_thc tv,'o-fLxed c_nter problem is given Lq terms of
ulliptic functions wXk the initial conditions enterk_g not only in coefficients of



referred to the bnryeenter of earth a:-.2n:oon," ....."

_%-

-PA = -RA + _-0 x -._1:' (33)

The development _o ' .... dii:e:._ ..... _:..::. fr_.-n .:.:.. o. /_itxlz-Arcnstorff, Davidson,

and Sper!in4 (1) - _ " ' :-• 11_ "£L'O i'w: _t'(_'%.-," [ .... :i J_.. C'_,.'-'i, GL,: ,.. t:trce" dlillOllSlOllS'"" ill-

S[O3.d Of L_,"'O s.no, %.'.e Qu.l_l " ....... F_.t_.iI._ co, or,,: ..... c _',mt_:.: :s at A instead of

ti:e barycenter. :"-,o_.,,,:..4 t:.:-:: _,,_._:)F:_:::, = _u .... _., o_ Ec.. (31) in terms of

tke solution of :::e _,',o-$k.:,c. co:ix.:" !xoblc..:-. :_ now _ou_ht. i:or the rive-fixed

center probie:r., :::e :ia:niko::i_.:: i_ gi\_n b::

J' : P ,'- (34)
"J --.-k r i 1"2 '

and the K::ui!ton equation_ are

_L

R A' : grad:) , J' : -i_A"
:A

and

..... (35)P,' : - srac_ J - . : ..
--.-k 1" _ r .)

±

Denoting tke so!xtion o. :lie t",_.o-:iz(_:a center :_roLle::: by prirLes and that for the
restricted problc:n \','itLout p:'Ltt_s, tl:e solution sousk_ is to have the form

R rio'-P0' _ : _i ,A0 (:), _o(:), :.

and (36)

P '-,.R0'-P0' t : o, R <_),'"-- : _ 0 p-O(t) t

"FLus, tlte probte:n is reduced to fi:din_ the tinte dependence of tke initial con-

ditions in the solution o: tkc r, vo-:Lxed center problem tkat provide the solution

of the restricted proble:-: fi_ tke _ante functional form as th:_t of the two-fLxed
ee::t_r solution.

The "- " '"tkeoze.n, :nent;o::c:i L: tire inE'oductio::, on :ke _:___.o,._--- determining

the time variation of the initial co::ditions will ',tow b_: .4iven a precise statement.



Similarly,

.,T
,s
. ._

£rad _ A ro o
.j

so that Eq. (22) ,-Aav !;u \vi'itte:. -._

--.-_ ;3 3 ==

3.

Now, front Eq. lu),

--- ]2

-2"

¢_ x 1i

-A. 3 " _" "

7_

L

(27)

(28)

(99)

.o_ _ i:< {,2_) yieldsand use of t'-,i_ :uiatio-_ _o2 _ c_2d ._(_. (28) " D Ec-.

-2"

a_ -Yl.

(8o)

Finally, ff tk_ __ x -'_A on t.:u £.2t _s tran._;:;oscd, to tkc _"._"-.___hand s!r_e o£ Eq.

(30), it beco.nes identical v.i_2 t2_; equu_tiors of motion (15) in the rotating sys-
tem.

I{_.L_T,OX_"" - B:T2_": E_X? .......z::: T%VO-Z._XED CENTER PROBLEM

;_ND THE RESTRICTED 2 +_u:)_-:..,/

Lan_._ton_an J kas _tow _eun obtained for t2e restricted problem in a

rot_tin_ coordh_ate s)s_n", with the origin at A:

J = _ r_ ro _ _.% A \ A' L 7
(31)

with

-T-

A = ¢_L + YL (32)

7
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_t

_RA = gn'ad J = _) - m -< (21)

and

(22)

_..o1_,.. it is c'cz_.c::_ :.-:.: ::q. t--., i_- .c.::.c:_, v,,:.; _. (i5), dcfinipg

the relation bet_,,cc.n \-_oc_ "-., _.\_ .. ::.. t.te :.to::._ : .... _:_._ co::j _uo_.,_,." to _,4,. _'ow,

it will be shown :k:< Zq. tzZ) :'_:.,c_5 to t::c _,,.-t/c.:_ of r:otion (15) in the ro-
tating system, i.'iyst,

d R (2gra ..... - r_ 3)., _ z &,., ])
At.2 Z'_ _ __-. * r. :Q_

But,

hence,

2 r_ grad_
,)

r I = _rmd77 _:_

-)

--.k

.)

-- ._ X--1 -- 1LL <. .'

= o_ - "_ A - = '__

so that, finuily,

grad_ r I -
-A

]-II

r
1

and

grad_A rl r _
i

(25)

(26)



but is _ vector mutually pcrDcnLi<:ul::r 2o _2_ a:-d _ and satis£y {'',_ Ec (ld) with

bars over tire vectors As *'-_..crotati::< svstent i-:-s xngu!ar ve!oci D, O it follows

of course, that _- and _ _,rc i<c::ticxl.

A constant o£ .::otiou 2or 2:_ '::_,Llc:-,: i:: t2:c :'o_th=g s)-ste'u may now be

obtained by dotting Eq. (15) with 22 and notln_; • " :2:c earth and the moon are

fLxed in this syste:2, so d-.xt ""

Thus,

__t _t _"

: ;) : L (IG)--m

(1 ,/ __

dt 'Z

.0

u

- (17)
_'1 )"

-- "-2 "T- _\

-; 2- ] ; -z" i_ • T / _-'{ .... •- )mA/" ' '._=x gA

[i ' .' "

(It "rl r.
x "-*

-7-

L and h are con_tar.t vcotoPs.

5

0

,_ . q- . u-] • L = "_ g',<< ma --2"- ,/m.k __ ,\!! X A/

munoti..S the corstant of motion by J:

,)

2- :'2 _ ! '

J = _-R,
~ --.-t r. .t" S0

It may now be s2;0\_2; ":" " " tl.e_,AA_, i2 VcC201"

_t"

p = _ = r" xIl (19)
--A _=k == ". .-x

is regarded as the P.:o:uen_um conjugate to _A' ti=e inte:gral J of tke :rotion be-
.2-

comes the Hamiltonian. To prove finis, substitute for _A' using Eq. (19), in
Eq. (IS):

o 9

J = _ i\_A-_X ...... " _ -_/_A L x
"- A. r i r.2 .3 '..'_ _A -- -- _ - g _k

(20)
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_ _'_ ,"_ and obtain the equations ofFirst, it is necessary to cli:tlill:=tt7::i':oF;._:<. <_;

motion in terms of___A, RI' and k,._ 7o do this, one may differentiate Eq. (i0)

nvice with respect to ti]ztc.

, ° ° ° .....

R = _x + "' T (ii)__ "" _ _tZ

Now, rite condition tkLt t:.< _a:tL :::.d :noon ::Love in circles "c:_dcr tkeir mutual
I

gravitational art raction ntoans t).:.t

a nd

L : - x i

.. i

1 _ x i. - I '- ') -- (12)

DifferentiaKon of <.. (_))

• us to write Eq, (11) as
: u, as 2= k:.s constant magnitude), enables

'I

I

I

I

I

I

I

I

I

I

. ° ° °

]_ : R, - . c L -- 7 L (13)

and the equations of motion (l) become

It should l)c :toted tk_-t, at t::i._ :L<<c, the coor<::u<,_ systo:r, a._soclated with A

is an acco!orateC sysLont _utcc ..._-oridin has KlliiOFzLICllCtilthl ...._; _",,,oo.O,_. It is,

however, no_ a rotatin.: ._)_t_.m ,_-t - that is, tk._. coordhtatc :uxes rer.',ain parallel

to the i:tertlal a:<_s :._t tit,: [_:.f]'Cclt:<:i'.

The next =tep is to tra.,tsfor:.: to rotatln_ .... "_"coot un=a.es about A. Tile vectors

in this system will be denoted by Lars, and the equations of motion become

T_

' R A_A .... u 8 " o" _, (a _L - 7 _L) - _'_.q x

rI r 2

-_x(_xR__ _A"]-., (15)

It should be noted that, in tkis ........ ,_'• _u.__m.o coordinate <.sic:n, tkc c'arth and the moon

are fLxed, with position vector i_: oi the moon rui:.tlv,_ to t_te ear'd_ as a constant

vector. The vector L does not represent the veioci<," of the moon (which is zero),

4
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I

c ...... the two-fixed ccntc:' :', ..-.it ":.:i! :to .,_cd ..s ,:1"o b:tsis of a pertur-

b:r.ion Lhoorv, ir is ucccss:i:', .... "....... " ...... .'" bc fixed in the ro-

t'_*"_.g coordinate s\stu:u. TI:i: _.... _..-s 2:-:'. t.::_- ,_:: :.; of :!:i_ rotating system
must be fixed re!athc to <:< c._'.i. : .... 1 :i:,: .:..o,:. L:.c :nest genera! of such

points will rotg_te about t!:¢ b:.:Sc ..... ;" _.,.!t:_ ::..... ./..l..: ,.cloclp, or the earth and
• ,.

tke moon. Ti_c tad:us ,.vc_o_" .:',,::: t.-c. bar3•c .... to t;;u ..... of t!:e rotating

system caa_ be ex_p:'c.saud as

. . , . . , . • .who.re L ':,ntd L ::."c _.:c. :_ ,-_:t.,<. _..... ,. doc!-v ;< ct..:._. . c_oc.c_:x c O, of the moon

relative to tho-c./_rL: ,11 :,_ IIOll--!'v,L<_._:i b coqirci[,-,:.%L. _-, _:._._:.., <lily, . .i is i.hc angular

re!otis" of the n:oon :.b,x.t 2:_ , ' " Fro::. _::c ,i,::::it:.,;:: o' L :_..;d L ;t is ap-

parent th:).tbotit v,.c.:ors :::'c i:.x- ..... t..cNc.::_ <x : ...c. F..: .... .., ,..<,, c, L and L

[fro consg.thIl£ VOCL©I'd ill L.,L' :'<;_.::_[:l : "._tO:.l .<lk[ "- J5 V,'):lS::::'*[ill }_V'Lh 11i0

inerzial fra:;'u x:td t).o rc-:_ti: _ ._j ::_ .. -?:k:s, :;:,.. :,h _t!rchk:X tht{_ t':c point.
A be iixea rck:ti\'e to _;;_. c'.;_'..: :...d t!,u n:oo:; :.:. _li,_.s tk:tt c4 .._', and / :arc

numerical COlls[:_::t_. Y.:c C_nxt..,',t ._ may sv: c:.o._cn ,_,,._,_.b, for the poinL
.4. _S tlSC< t, kO dk'[< r2lillO k:" -r<i.5 of ."JLLzLiOi! o,,;,-_,__._..._.,-4 ,,.{' Nio .:'_ c[il'c:ctio21, kt,'ld aF.

points \viii: the san,.u -, r_::cl / ,.,,-ill _:_,on ti:c :_:_nzu axis ::._cpcl,ucnSy of J. Thus,

may be ..... "_a,..,::. as :'.ere without los_ of oe.,,:.-......... .,.,.._:r,., nnd it will no longer aopeL:.r
m the forntulation. ".... • .... ; .... >• i,c, czz,._s to Figure_ l, iris aocn that R, ,_, t_Ro, _L, and

, the position vector of tltc vc:t:cle relativu to ;_, satisfy tnc following re-

lations:

R : A :_< = R. - ah + 7> (io)
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" '-_' • from the ,'_e of theit o:-]: 12c so'o:: -:'0:7 :::c :: .... :::_ '.:. . : .: ...... :'_-- ....... _ ,._

:_ _ ' " " ' -- - .- • -,_ " - " ::.'1 iDeo2us_ G :_!:C]"" _. C:cSIi':':).C tO _ ...... _ ..... _.. : ................ ,.......... :c,

v <s:.d -_:'c d,::_:'...:::,., c.::. _:'s ..... :..::: .... ._ .:...- _ _:-.,_ ,.,_.::d ::ardly expect
.... " " '- for dc:crn:ining!9et_c!" YOSLi::.. "_ ..u' .,.-C 3- O: ....... " ..:Oi'_ : . .... ]" ___i; ...w. .... _._

and 7 ,-: .... -: " ._:.c . to c.::.- .. 1_. i :')z'ovc:ttent. .is notc.d

(_i'ilel" "'- - ..._,:]-.5(:= ',,VAt:C: .'_.:___- ......: _..., . .._.._...d..: O.: :ill:.2 aS \\'C_] ::S 0_: _IC

_ -: " ' ,:.hi :.'_' :_£LVaC:_ ._) ilxxle::].LOS

:::a: :i:::e_. 0: ::t 1,-::_-: tO 60 :;O'_.:'.s cC...d :)e. ,.=c.i '..::. ..... : :):,;_udlci::G _,he va!idi W of

t::e apl?-" o:< i ::::_.:i o::.

-) -...-,.:. :ii{E.'<CZ S

.

_o

.

Sei:::iz-2,1"e,::-:o__., *..,:" ..,-,T' -_-. _,.......... _: ,,.,.... ,,.., and S:_erli_:_,. It.J., "The
....... ; ......... n of li:uler's t:_'c:.',!em ofiD,w_--i'iC:cd "1 .:TC.c-_>O:,..-*'-'_,..._ .... kS :- _ _ .......... =o,

_-_. _._-,. :': g.:.: '...:: ._ :.tat:. ....._ :o L.,. ::_" T:'a{eetories, " _)"o-

cce,.::::s o: :::G .'<:.:i '" ",,=...i __.v:.... _ Oil .,.:::lii_,: _-'3:iCw 2 ii6alt, IllStiL_iteof

,3_C:I'O.._5:._.C6" _C:[c.idv:£, :_ "

.Arc:tirol'i, i<., .'<otws o:. ::.c i-le.ot:rictcd i_:'c:,:c::, it: Two Din:onsions

(P±" i\:,:e C :::::::::::::::::::::

Pi::_;s, S. _nd _ '" -_ l'v,o-,-ixed-Cen:er: .: ....._:, .,:.: T:.w Applic:.:io:. of :i.,_ "_ " _

:Prob!e::: to LuL=:" T.:.:ec:_.._:_s, R.e!so-': R..C =-4, Republic Aviation

Corporation, gO O,;:obcr 1>5:..
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_<_.L!._?,F :,.--.f -.J3,.Z),.C.L_ _'.ZSULTS

The :,_.r:.:..,_c: = £ : ..... - ..=,._ ::,_en cctcr:.::n,_,;. :or a !uuz:r orbit with the"

foiiowi::g inizla! co::d:::#::_-:

The ,_,_.:,.,.__'............ o: t.:e ".-c:::.c!c f:c :..:._. _.arth is ._L.ut i_. 4 ca:-:i_ radii, and it has

a speed of a:Jou: t_ :,..:,'_c Fvr :.._.ec cor:dnlo:-.._, :.-w va'ccs oz o a-:u ", are the

following:

5. - -d.2SllTb">i'_O -_

)' = % 2,_'110731 :-:"

TI:o nvo-fi:.:c_-c_.nt_:" c:.lc..<-:.Coi'_ \vial< ,)....:h.! co:<<:.:ions .,.-,odiEic<i for

evaluatio:: o: ti-..c -..csit:..,:: ::::L .. :./.:_'i:" of t!:c ,.< :..el,: ::t z,5, b:_, and ,33 :;ours was

CO!ii_3&l'OC* '¢.JL_L [,[:,-' IAz:,_' " """ " ,.,: .... , . .o. _:. ::. " ..... ant :g ._cu±'_ .',.-.cc_i,,-_iv. Tkc devi-

ations in )OaatiOn Of i?t :',,O-ii'-w,L-C_ALOf " ]"_- ....... ' " "• " o ...... :..o_o.-ii'on- 1.:0szasc case ave shown

ill tile tZ;]le :SiiO',,V. _tteiuc.uC iiI L £f.:!lO t&]31C tzZm ti'.u _ "" "'' ) -......... :.< £;c< im_aO,lb OZ"fie eorres-

pon_lng Kepicr: .... "......,,O:_ic..i _YO'i" _lu :A.._c case.

Dist. fro,-n %rb.o->'b, ied ,

Time E ar fi; D_ , i-. tl on -C _-::t_ r Kepler

23 m" o_. 3 El:: x i---/kiln 17 0 km

,- iS z kin 200 km
--" U

:'. ;_b km 10 km

33 hr -12.! EI1 :,: z < 2 k:n 43 0 km

__ )' 155 i:m 250 km
, z i-='2km 3 0 km

53 l_" 52.7 ER x igOOkm 1970 ,tm]

y iOSOkm liO0 km
A z 993 km ii0 km

iS
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DIFFERENTIAL CORRECTION SCHEME
FOR THE

CALCULUS OF VARIATIONS

by

George N. Nomicos

SUMMARY

A differential correction scheme is developed for the improvement of the

approximate initial values of the adjoint variables so that an integral functional

satisfying desired boundary conditions is optimized. The adjoint variables

satisfy a system of equations that are developed by applying the classical methods

of the calculus of variations, properly extended, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general transition matrix is derived for the variations of the end con-

ditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program and of the final time of the

nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.
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SUMMARY

A differential correction scheme is developed for the improvement of the

approximate initial values of the adjoint variables so that an integral functional

satisfying desired boundary conditions is optimized. The adjoint variables

satisfy a system of equations that are developed by applying the classical methods

of the calculus of variations, properly extended, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general traasition matrix is derived for the variations of the end con-

ditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program and of the final time of the

nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.

[
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INTRODUCTION

In the problems of the calculus of variations, a system:of partial differ-

ential equations must be solved with specified boundary conditions. In addition

to the state and control variables that appear in the equations of motion, the

inequalities of constraints, and the functional that should be optimized, there

is a number of adjoint variables that satisfy additional equations for the optimi-

zation of the given system. These equations are derived by the ai_plieation of

the classical methods of the calculus of variations, properly extended, or from

Pontryagin's maximum principle [1], [2].

When some approximate values of the adjoint variables at the initial time

t o have been calculated, then, by numerical integration of the above systems of

equations, an optimal solution is obtained that does not satisfy the desired end

conditions. In this paper, a differential correction scheme is developed that will

improve the approximate initial values of the adjoint variables so that the optimal

solution will satisfy the desired end conditions. A general transition matrix is

derived for the variations of the end conditions caused by the variations of the

initial values of the adjoint variables, including the variations of the thrusting

program of the nominal optimum trajectory and the variation of the final time.

An iteration scheme also is presented for the convergence of the improved

values of the adjoint variables to those of the optimum solution.

First, the general equations of the state variables, used mostly as

constraints, are given, together with the equations of the adjoint variables.

Second, the variational equations for the above systems of equations are

derived, and an application to the problem of minimizing the fuel of a space

vehicle flying between two given boundary points is given as an example.

Third, a differential correction scheme is derived for the improvement of

the approximate initial values of the adjoint variables, and an iteration scheme

is presented for the convergence of the improved values of the adjoint variables,

so that the optimum solution will satisfy the desired end conditions. Finally,

conclusions and recommendations are presented for the application of this

scheme to the actual flight of space vehicles.
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FUNDAMENTAL SYSTEM OF EQUATIONS

State Variables

The motion of a vehicle is characterized by the vector variable x(t) belonging

to the vector space W at any instant of time t. It is assumed that this motion is

controlled by a control vector u(t).

The fundamental system of equations of state variables is given by

_i(t) = fi(__(t ), u(t) ) (i = 1,2,... n) (1)

where x(t) is an n-dimensional piecewise differentiable state vector, and u(t) is

an r-dimensional piecewise continuous control vector belonging _o an arbitrary

control region U that is independent of time. The functions f. are defined for
1

x _ W and for u _U and are assumed to be continuous in the variables x(t) and

u(t) and continuously dffferentiable with respect to x(t). For a certain admissible

control u(t), the motion of the vehicle x(t) is uniquely determined.

The integral functional to be optimized is

,T

Xo(T ) = _ f (x(t),u(t))dt
t

0

(2)

The necessary conditions for the optimum control vector u(t) of Eq.(2) are

formulated for fixed boundary conditions of the state variables X(to) and x(T)

and for free end time T.

Adjoint Variables

For the optimum solution of Eq. (2), another system of equations is con-

sidered. This system is linear and homogeneous in the adjoint variables

(t) = (yo,Yl,...yn) = (Yo' y) which is an (n+l)-dimensional continuous vector,

and is given by

n
_f. _ (t),u (t))

= -7_ ] 5x. yj(t) (i = 0,1,...n) {3)_i(t)
1

j=0
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The Hamiltonian _(x(t), u(t), _y(t) ) is defined by

n

= _ Yi(t) fi(_x(t),_u(t))

i=O

(4)

and the systems of Eqs. (1), (2), and (3) correspond to the Hamiltonian system

_i{t) - 5Yi

Yi(t) 5x.
1

(5)

Pontryagin's maximum principle and transversality condition give, for

optimal Xo(T), the function _(x(t),u(t), _(t) ) of u(t) belonging to U attains its

maximum at the point u(t), i.e.

_:_ (x(t),u(t),y(t) ) sup _-'(x(t),u(t),y(t) ) = 0
udU

yo(_ < 0 and Yk(T) = 0

(6)

where the subscript k corresponds to the subscript of the state variables for

which the terminal value Xk(T ) is free. For most of the engineering applications,

we have Yo i/ 0, which is normalized to Yo = -1.

(L)
The Lagrangian multipliers A(t) of the classical calculus of variations are

related to the adjoint variables y(t) by the relationship

(L) 5fo(_X(t),__(t),u(t) )

)'i(t) = b_. Yo (t)+ Yi(t)

i_O I

(7)

If the time t appears explicitly in the system of functions f or fo' then it always

can be transformed to an autonomous system by introducing an auxiliary state

variable that is defined by

Xn+l (to)= i with Xn+ 1(to)= to (8)
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Example

For a space vehicle powered by a throttled engine and flying in the

gravitational field of only one attracting body, the system of equations of the

state variables, i.e., Eq. (1), reduces to

__-v _1,f2,%

:- _ R+u--_-e %'%'f6
_ m

r

r_= - u(t) f7
o

where e is a unit vector in the direction of the thrust, and u(t) is the control

variable belonging to the range 0 _ u(t) _ K.

(9)

For minimizing the fuel between X(to) and x(T) with free end time, the

integral functional to be optimized, i.e., Eq. (2), becomes

rT

x°(T) = Jt fo(X(t), u(t) )dt
O

withf = - _ =u__if/
O C

(i0)

The system of the adjoint variables, i.e., Eq. (3), reduces to

9o(t)= o

R'>,

k - 3D-_-Ru__'(t)= 3 -
r r

_I(t)= - _U

97(t)= u(t)2 (5 "-e)
m

_ (11)
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The maximum principle and the transversality conditions of Eq. (6) become

Yofo+y .V+)_'( _3_R+u(t)m_e)-y7 u(t)c =0
r

Yo(t) = -1 and Y7(T). = 0

(12)

where f =
0 C

t

From Eq. (1), it is obvious that ),//e and that the switching function for

u=0 or u=K is defined by

I_,l Y7 - Yo "%--

Sit) - m c _u (13)

when u(t) = / K (max)0 (rain) respectively.

VARIATIONA L EQUATIONS

In this section, the variational equations of the optimum trajectory of a

space vehicle are derived. The formulation of these equations is required for

the application of the differential correction scheme that is developed in the next

section.

The application of Pontryagin's maximum principle for the solution of

optimal problems yields additional information for the synthesis of optimal

controls. Making use of this principle, the system of Eqs. {1) and (3) may be

rewritten in the following general form.

r'{t) = ! y{t}_(t) {_x,y,u)

(14)

5

I
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The variations of this system are obtained by

A__ (t) = F (t) Sr (t) + Ah (t) (15)

where the matrix F(t)

F(t) =

and the vector Ah(t)

bf _f
-- I

b£ _g

5x by

are given by

hh_(t) =

_f

_g

f(u + _u) - f(_u)

g(_u +__u) - g (_u)

(16)

Transition Matrix

The fundamental solution matrix for the homogeneous part of Eq: (15), i.e.,

_(t) = F(t) ¢(t)

with initial conditions _(t o, to) = I (unit matrix), is the transition matrix ¢(t,to)

of the system. From the properties of the fundamental solution matrix and the

transition matrix _(t, to) , we obtain

t,r(t)= _ (t, to) A_r(to) +
rt
0

¢(t, r) __h(r) dr (17)

which is the solution of the non-homogeneous Eq. (15).

In the example of the powered space vehicle flying in the gravitational field

of one attracting body, Eq. (17) reduces to

N

_r(T) =¢(T,t_ /_r(to) +Z ¢(T.tj)__h(tj)Atj (1_8)

j=l

6
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where t. is the time at which the thrusting program of the optimum nominal trajec-
]

tory with the approximate values of initial conditions r{to) switches "on" or "off"

during the time interval t < t. < T, and Z__r(T) gives the deviations of the nominal
o j

end conditions from the desired end conditions, i.e.

_r(T)

£y(T)

_(T, to)

_x (13 _x(z3

bx (to) 5y (to)

53,('1') %i(T)

5x(t o) 5Y(t o)

X x (T, to) Xy(T, to)

Yx (T ,t o) Yy (T, t o)

(19)

lira
_a(tj) = ¢--,0

:_ (tj- 0 - __(tj+ ¢)

Because the boundary conditions of the state variables at the initial time t
0

are given, we have AX(to) = O, and Eq. (18) becomes (see Fig. 1)

N

__r(T) = 4¢(T, to) Ar(to) - !_ ¢(W, tj) 5__(tj) Atj (20)

j=l

or

Xy[01Zy _(t

where X = X(T, to), and X (j) = X(T, tj) .

IF-)5°'JL°_,)j=l

_ _)

7
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and

From Eq. (21), we get

N

__x(T) = % Ay(to) - _ LX x(j) 6_(tj)

j=l

÷ Xy (j) 6_(tj)J At.j

N

j=l

5__ (tj) + Yy (j) 52 (tj) j _, tj

(22)

(23)

Thrusting Program

In the formulation of the variational equations of the optimum nominal

trajectory, the time variation At. of the optimum thrusting program has been
J

included where t. is the time at which the thrust switches "on" or "off' and the
]

switching function of the nominal trajectory is zero, i.e., S(ti) = 0. The time
J

variation Atj is calculated from the variation of the switching function _S(tj+Atj)
for which

S(tj +Atj) + _S(tj + Atj) = 0 (24)

From the linear expansion of Eq. (24) we get

(tj) _.t.] =- - 5r5-SShr (tj + £_tj) (25)

5S
Because Ar (tj + Atj) :" Ar(tj) + A_ (tj) Atj and _ A__ (tj) = 0, Eq. (25)

becomes

=_ 5___SZ%r(tj)S(tj) Atj - 5r -- (26)

Expanding the variation Sr(h ) from Eq. (20), we get

i<j

Ar(tj) =¢(tj,t¢) __r(tc) -_ _(tj,ti) 5__(ti) At i

i=l

(27)
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_(tj) 5r(tj)- i=1
<_(tj, ti) 6__ (ti) At i

and, in terms of the variations Ay (to) , it becomes

'- At.=--
]

.5s(t.) 5s(ti)
1 t___L2_ Xy _ Yy , t o) jaY(to)

• Lbx (tj) (tj, to) + 5y{tj) (tj
S(tj) -

1
+ -T'-----

S(tj)

5S(tj) i_<j_

5x(tj) _ LXx(tj'ti> 5-x<ti>
i=l

+ Xy(tj, ti) 5_(ti) ] At i

1 _S(tj) i<j

_<tj> 5y(tj) _'=1 IY<tj'ti> 5-_(ti> + Yy(tj'ti)5_<ti)_ti

(28)

(29)

From Eq. (13) for the switching function S(t), we find that

[ _' t Y7 - Yo S(t) = m IX lS(t)- m c

5S(tj) I),]

5__x(tj) : {0, O, O, 0, O, O, m2 }

Y4 , Y5 , Y6
_= {mI_. l miX[ m!XI

1}.--, 0, 0, 0, C

(3O)

DIFFERENTIAL CORRECTION SCHEME

Correction Scheme

In this section, a differential correction scheme is developed for the im-

provement of the approximate initial values of the adjoint variables so that the

optimum solution of the problem can be found. The variations of the nominal

optimum trajecto._, of the space vehicle, calculated for the approximate initial

values of the adjoint variables, have been derived previously.

9
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Making use of Eqs. (i7), we solve for Ar(to) if we know the variation

L.r(T) at the terminal time T. In the example of the powered space vehicle we

derived Eqs. (22) and (23) for the variations of _.x(T) and _-y(T) caused by the

variations of the adjoint variables _Y(to) at the initial time t o and the variations

At. at the time t. of the thrusting program, which corresponds to the optimum
J J

nominal trajectory for the approximate adjoint variables.

Free End Time

In the case of free end time T, a variation in the terminal time also is

taken into consideration, and, making use of Eqs. (29), we find that

_x(T) = [r_ Ay (t o ) +_(T) AT (31)

_y(T) : [_'_]A_y (to) +]_(T)A T

Separating the seventh row of Eqs. (31) and (32), we get

_l_x(T)= [r] Ay (to)+__(T) AT

(32)

(33)

AY7(2_ = _7 Ay(to) + _7(T) _T (34)

where Eqs. (33) and (34) are of the form

[6xl]=E6x?] [Txl]+E6xl][Ixl]

Fixi]=Eix7] [7xi] +[ixi]Eixl]

respectively, [F ] represents the first six rows of [i_ ], and i')7 represents the

seventh row of [_2].

For the solution of the system of Eqs. (33) and (34) for AY(to) and AT from

the deviations __x(T) and AYT(T ) = 0, we need one more relationship, and this is

obtained from Eq. (12), i.e.

7

_(x,_u,Z) = _' yj.fj(t) - fo(t) = 0 0 5 )

j=i

i0
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Taking the variation of _(_(t) at time to, we get

7 7

fj(to)_yj(to) + _ yj(to)Afj(to)-Afo(to)

j=i j=1

= 0 (36)

Because z_f i(to) = 0 and Afo(to) = 0 if the variation of the switching function

AS(to) does not change the sign of S(to), Eq. (36) becomes

7

)_,_(_o)_'j(_o):o
j=l

(37)

or

V (to) " A_P (to) + _(to) • __(to)
u (to)

c AYT(to) = 0 (38)

Thus, combining Eqs. (33), (34), and (38), we get eight equations with eight

unknown variations that are given by

___(_

0

0

a 7 Y7 (T)

__(tS o AT

(39)

Solving for 2,Y(to) and AT, we find that

I

I
I

AT[

L J

_7 _}7(T)

__(tf 0

-1 U
iA._(T)
l

i

I °

L°
(40)

Iteration Scheme

For the calculation of the optimum trajectory of a space vehicle, the

differential correction scheme descrL_ed im this section is applied, and the

variation of the adjoint vector &Y(to) at the initial time t o, as well as the varia-

11
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tion of the final time AT, are derived to match the desired conditions at the final

time T in space. Making use of the corrected adjoint variables Yl (to) =_(to) + Ay{to)'

a new optimum nominal trajectory is computed by integrating the system of equations

of the state and adjoint variables, i.e., Eqs. (9} and (ii), by making use of Eq. (13)

for the optimum thrusting program as described previously. Because the differential

correction scheme has been derived for linear variations of highly nonlinear equations,

it is expected that there still will be a discrepancy between the desired and the new

computed values of the end conditions _Xl(Tl) , where T I -- T + L T.

In general, successive iterations generate corrections A_k(t _ to the adjoint

variables at time t o from A_Xk(Tk) such that

k

Yk+l(to) =_k(to) + _Yk(to)=Y(to) + _ AYi(t_ (41)

i=0

which, in turn, gives end conditions with deviations A_Xk+l(Tk+l) from their de-

sired values, and

k

Tk+ 1 =T + ). AT i (42)

i=O

This iteration scheme converges to the desired end conditions of the state

vector, provided that the deviations are within the linear range. Departure from

the linear range will be indicated when the deviations of the computed nominal end

conditions from the desired end conditions A Xl(T1) are comparable to or exceed

the deviations ALc(T ). In this case, each step of the iteration scheme described

above contains a sub-iteration carried out on a parameter _'k introduced as a

factor multiplying the deviations A Xk(Tk). Thus

A_xk (Tk) = Tk _ Xk(Tk) ' (43)

* Ayk*(t *From __x k (Tk), we obtain the correction o), which is added to j_k (t¢_

for the kth estimate of the adjoint variables at time t o. The sub-iteration consists

of the determination ofavalueof _'k {0<),k_l ) such that the deviations __Xk+l(Tk+l)

computed from the corrected adjoint variables, i.e.

12
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k

't =Yk(tc) + Ay k (to)=Y(to) + 7 AY i (to )Yk+l _ o) ._
i=O

(44)

are comparable to or less than the deviations AXk(Tk). This procedure is continued

until the linear range is reached for which "/k = 1 and the iteration scheme converges

to the desired end conditions.

It should be noted that the same procedure is followed when parameters other

t_mn the state variables are specified as end conditions. Of course, these para-

meters must be expressible as functions of the state variables.
4

CONCLUSIONS AND RECOMME NDATIONS

A differential correction has been developed for the improvement of the

approximate values of the adjoint variables so that the optimal solution of the prob-

lems of the calculus of variations is obtained. The mathematical analysis for the

differential correction scheme for the optimum trajectory of a space vehicle with

minimum fuel consumption between fixed boundary conditions has been presented.

The method developed relies on the variations of the nominal optimum trajectory

of the space vehicle calculated for the approximate initial values of the adjoint

variables, which are assumed to be given. Techniques for the calculation of these

approximate values are not considered in this report.

A general transition matrix has been derived for the variations of the end

conditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program of the nominal optimum trajectory

and the variation of the final time. An iteration scheme also has been discussed

for the convergence of the improved values of the adjoint variables to those of the

optimum problem satisfying the desired end conditions. In addition, a method for

the case of variations beyond the linear range has been outlined.

This program will be highly useful for the determination of optimum space

missions and for optimum orbit transfer for intercept and rendezvous of space

13
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vehicles as well as for optimum navigation and guidance of a space vehicle.

Further work in this area is readily suggested. First, techniques should be

developed for the approximate initial values of the adjoint variables that are

used for the optimum nominal trajectory. Second, this correction scheme

could be extended readily to optimum problems with more general types of

end conditions than those considered in this report. Finally, a more general

differential correction scheme is required for the optimum pursuit of a powered

spacecraft, which would involve a statistical-control scheme for the probability

law of a randomly moving point.

APPENDIX

VARIATIONAL PARAME TERS

For the calculation of variations of the optimum space trajectories, there

is a general matrix introduced that relates the variations of the state and adjoint

variables at time t to those at time t . This matrix, called the general transition
o

matrix, requires the computation of the partial derivatives of the state and adjoiat

variables at two different times, i.e., t and T, and relates their linear vari-
o

ations at these times, including the optimum changes of the thrusting program.

When the thrust is "off," the system of equations for the adjoint variables

is "adjoint" to the system of equations for the variations of the state variables,

which, in this case, is homogeneous, and the transition matrix of the state variables

is used for the calculations of the adjoint variables during the coasting intervals

of time, i.e., ti< t < ti+ 1 . In this case, the transition matrix of the state

variables X (ti+ 1, ti) is found from the corresponding Kepler problem, and it is

expressed in closed form from the solution of this problem.

The variations of the state variables and the values of the adjoint v_.riables

for the coasting interval are given by _3 ].

14
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where

and

_,_ (ti+l) = X(ti+ 1, t i) A_x(t i)

I_T (ti+ 1 --1 ^, , Y(ti)(ti + 1 ) = ti) ._

__(t) T = (Xl,X2,X3,X4,X5,X6)

_(t) T = (yl,Y2, Y3,Y4,Y5,Y 6)

(45)

(46)

^ 5_(ti+l) (47)

X(ti+ 1,t i)= 5_(ti )

The use of the conventional state variables _(t), which are position and velocity

vectors R and 1_ in cartesian coordinates, has the disadvantage that all of their ele-

ments have secular terms that vary rapidly with time. If, instead of the conventional

state Variables, other parameters are used as state variables, the resultant matrix

might be simplified considerably. For example, consider the following parameters

and their variations:

_2

_a 3

A_ 4

_a 5

_6

Rotation of R about 1_

Rotation of 1_ about R

Rotation of both R and R about H

Change in cos _,I_), keeping v and R constant

Relative change in the semimajor axis Aa/a,

keeping R and _/v constant

Relative change in the magnitude of the position

vector (Ar/r), keeping R/r and _/v constant.

The transition matrix corresponding to the above parameters, i.e.

A__(t) = _(t, to) A_if(to) (48)

15
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_(t,to) =

F f-iv _ 0 0 0 0
V 0 r0

- {--_ _ o o o o
v r

o o

0 0 1

0 0 0

0 0 0

0 0 0

5cz3 5_ 3 5_ 3

5cz40 5cz50 5a6D

5_z4 5_ 4 5a 4

5_40 5 c_50 5_z60

0 1 0

r v 5a 6 _x 6

O;g 5-_50 5cx60r

(49)

where some of the non-zero elements are listed as partials of the orbital para-

meters and are given by Ref. [4 ] as

i _cz40 r

_(_ _-,)]5c_3 _ __ !__.hL_.g-3(t-to)-3f_-(t-to))+(f-i ) 40" roy o
5_z5---_ r v o2ro

(50)

(51)

I

I
I

I

5ct3 . h r v 2)_ E_(_--_-"
O O

I)2 ro ]-2g+ (f- 7 (_40
0

(52)

5cz4 ro vo
mm

5a4 0 rv
C_-""_6-_'_]_;

r2v

(53)

5_50 rv 2 . -- o
(54)

v r 2 ro

I "_{_-(_-D°,}{-_,:_°-_o(_'°-_"'}]_:o

16



_4 v v + ro

_60 rv

(I_ r'_ ro
v 2
O r 0

(55)

-- " - _- _o(_"__oJ
i _60 Vo2r o

I.

I
I

I

I

I

!
I

I

I

(56)

(57)

The transformation relatiug the variation of the conventional slam variable/_T=

(,_R_.,_) _ the var_Uona of _ above set of_rs_sA_T= _c_ 1, _,cxg, - - • no_e)

is given by

A__(t)= P(t)_.__(t) and A__(t)= P(t)-I ___(t) (58)

where

P(t) ,,

and

p(t)-iT=

.

-H HxR
-_ 0 - - 0 0 R
v h

I _9)

_u _uxi__ __-_
o -7 --K- R2 _Hx_

mm

m

-v__H

h 2

/

0

D

rH

_x_ Ex_

_g 3• rv

0 S-

R
2a --

7 -_ 7

0

(60)
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The relationship between the transition matrix X(t,to) for the conventional

state variables _x(t)and _(t,to) for the above set of parameters __(t)is given by

-I
_:(t,to) - P(t) _(t,to)P(to) and _(t,to)=P(t)-l_:(t,to)P(to)

The scalar functions f,g, f, and _ are given by

(ELliptio) (Hyperbolic)

(61)

a

f= _--- (cos. 8- ].) +z
0

a (coshe-1)+lf=?--
0

t_/'+-to' e- nSin e g = _-,#-to_sinhn8 -e (62)g IS

{ ==-a2n ==in 8 {= -'v/_'a"s:_h 8
| _'% rr o

_= a(cosh.8- i) + 1
a

_= y(cos e-l) +1

I

I

!

I
I

I

l)

2)

3)

4)
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SUMMARY

This report presents the derivation of a set of two body parameters ,'m¢[

their associated perturbation equations. These equations are applied to the

polar oblateness problem characterized by the second spherical harmonic. A

modified Poisson method is used to obta_ the first order solution to the problem.

The modification of the method is introduced in order to eliminate the occurrence

of s_,cular terms which, because of the parameters employed, would have caused

:I rai)id deterioration of the solution. The approximate solution is expressed as

,_. function to true anomaly. Some analysis of second order theory is presented

which suggests that difficulties with particular initial conditions may be avoided.
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DEFINITION OF SYM_BOLS

Time

True anomaly

Position vector

I_R I = magnitude of _R

Gravitational constant

Angular momentum vector

Eccentricity vector

GxP

Unit vector in direction of x axis

Unit vector in direction of y axis

Unit vector in direction of z axis

E ccentricity

19',

!P_I

Time of perigee passage

Semimaj or axis

Mean motion

Coefficient of second harmonic of the potential due to the oblateness

of the earth

3p2K2

4
(3"
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B

(r, e)

_p

Polar coordinate system introduced in x-y plane

SUBSCRIPTS

1,2,3

0

S

1st, 2nd, 3rd component of a vector

Initialvalue

Short periodic

Long periodic

SU PERSCRIPTS

o Differentiation with respect to time

' Differentiation with respect to true anomaly
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INTRODUCTION

Among the numerous troublesome aspects which one encounters in at-

tempting to integrate the perturbation equations for the polar oblateness prob-

lem, t_vo difficulties may occur which appear to be subject to, at least some

amelioration. In general, there are two decisions one must make before

these difficulties become apparent. These decisions consist of selecting a set

of parameters and a method of integrating the perturbation equations. The

possible sets of two-body parameters may be divided into two groups, one of

which contains canonical parameters and one which does not. Tire methods of

integration, kn general use, are Poisson's method (I) and Von Z ,_,_1'_,..w.._ method

[2). _-[_aeletter method is applied only to canonical parameters. In most in-

st:races, regardless of the set of two-body parameters or method of integration

e:upl()yed, the results present t_vo interesting properties. The first is the

occu:'renee of terms in the approximate solution which show a secular growth.

The _econd is the presence of singularities in the second order corrections for

certain initi,_iconditions of the parameters. The first property is not, in

gene1"al, ob!ecdonable since the secular terms usually appear in the expressions

for an_:le p_ameters. However, for some parameters, such as the unit perigee

vector, the occurrence of secular terms destroys the unit characteristic and

limits the applicability of the results to relatively short time intervals.

It is proposed in this report to derive a set of parameters and their as-

sociated perturbation equations which, when applied to the pol,__roblateness

problem, _!eld, after approximate integration, equations for the parameters

which mm]ifest no secular growth to the first order, except for one element.

A brief analysis of the structure of the second order perturbation equations is

developed which suggests that the occurrence of singularities arising from.

h_itial conditions is not a necessary concomitant of the polar oblateness prob-

!era. The application of second order theory, however, will not be attempted in

1
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this report, because the parameters which have been chosen degenerate for

nearly circular orbits. Even though the set of parameters employed is de-

fective, the comparative simplicity of the perturbation equations recommends

the use of these parameters for a clearer insight into the particular difficulties

which their use is intended to eliminate, it should be noted that the degener-

acy of the parameters for nearly circular orbits is not a case of replacing one

difficulty"with another, but is simply a consequence of the choice of parameters

and not of the integration technique. A more judicious choice of pa.rameters

has been made and an improved integrationtechnique developed which elimin-

ates the imperfections in the present method. A report is now Ln preparation

which incorporates these developments.
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DERIVATION OF A SET OF PARAMETERS FOR THE KEPLER PROBLEM

To specify the solution of the vector equation

six independent parameters are needed. For the purposes of this report, the

following set will be used:

cr, the time of perigee passage;

_P, the eccentricity vector;

_Q, a vector perpendicular to _P and lying in the plame of motion.

At first glance it would appear that this set contains seven independent

elements: but, since P and Q are mutually orthogonal, any one component may

be exurcsscd as a function of the remaining five. The vectors __Pand _ may be

obtained from Eq. (I) in the following mmnner: Take the cross product of I_ and

Eq. (i)
.e

Rx _ = 0 (2)

Integration of Eq. (2)gives

R x R = G (3)

in which G is the constant angular momentum vector.

prc<iuct of Eq. (I) and G__

Now take the cross

•. _R
R x G +---_- x G= 0

r

(4)

After expanding R x O using Eq. (3)and recalling that G is constay.t, Eq. (4)

integrates to

RxG-_=P
r

(5)



in which P is a constant vector.

rev,r iW v:n.,. (5) m the form

To find the m_nitude and direction of P

I
il

I

I

l
I

I

l

I

Evaluatin_ [':q. (6) at perigee yields

_ = U #e (7)
P

\vhoFc

e is the eccentricity of the orbit

:,s a unit vector in the direction of perigee. Let Q be defined by

Q=Gx P=_ZRxG +Rg 2 (8)
r

The maz-nitudes of G, P, mnd Q are g, p = Me, and q'= g-p, respectively.

Since R, P,and _ are coplanar, R may be expressed as a linear combina-

tion of __Pand Q_

The sc.,ar product of Eq. (9) with P yields

(9)

R- P r cos f

CVl 2 p
P

_I0_

where f is the true anomaly of R. Similarly,

R" _ rsinf

_2 = 2 q
q

]I may be written as

(II)

R=&IP+&2Q (12)

M,k_,._=-_,,_use of the well known formulas,

r _

_2

(i + e cos f)
(13)

4
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itfollows that

(14)

1 = -/_ sin f
gp"

(15)

e + cos f
&2 - gq g, (16)

PERTURBATION EQUATIONS

After having obtained a set of parameters the first step in deriving the

perturbation equations is to introduce the perturbing force F on the R. H. S. of

Eq. (I) which gives

R +-- = F (17)

r

The perturbing force F will cause R to deviate from the Keplerian orbit, and a

new solution must be found. This solution can also be put in the form of

Eq. (9), but now the parameters G, P and Q wil[ be functions of time. In order

to determine the time dependences, it will be necessary to obtain the differ~

enema, equatlo_.s for the parameters in so far as they depend on the perturbing

force F.

Differentiation of Eq. (3)gives

e6

G=RxR (18)

Substitution of Eq. (17) yields

G=RxF (19)

Similarly, differentiationof Eq. (5) gives

.... RxG

P=RxG+RxG+_
r

(2O)
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Substituting for G and R yields

P= Fx G+ Rx (RxF)

From Eqs. (8), (19) and (21), Q is given by

(2i)

g2

b

The equation for the variation of (y, the time of perigee passage, is deriv-

ed from Kepler's equation, which, for 0 < e < 1, takes the form

_I - e 2
n (t - ¢y) = tan -1 sin f

e + cos f

2
sinf e%l - e

1 + e cos f (23)

where n = / ___i and g = _+ _ta (l-e2).
'1 3

+a

For e > 1, Kepler's equation is given by

n (t- (_)= tanh-I sin f

' /2
%/ 2e -! e_'e -I

sin f
e+ cos f i+ e cos f

(23')

andg=where n = V 3
-a

-#a(e 2 -i). Using _rious identities,Eqs. (23) may

_".... * " *"_ _ul_uwhlg form

R.R R.R

r 2 2
(l-_)an - a n

-I
n (t- a) = tan (24)

n (t - (Y)= tanh -1 " r 2 2

(1-[)an a n

(24')

Differentiation of these equations with respect to time, and substitution of

Eq. (17) for _R gives, in either case

-- /_ -- U-- 7 --(l-e2)( " R_) - P (25)



where

1

a

R'R 2

r

and

• " f2a 2 "h

a=R-F

It is convenient to have available the total time derivative of true anomaly.

Differentiating the expression

R P
cos f .... (2G)

r p

it follows that

- (sinf)f=
rR-Rr

•---+_--" (27)
2 p r

r

and therefore

(28)
2 p q

r

APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

In this report, the polar oblateness problem will be assumed to be char-

acterized by _e perturbL-.g potential

1- 3--yy
_- r

(29)

In order to apply ':::e perturbation equations, previously presented, to this

problem, it is nccczc_.ry to specify the perturbing force F. This force is the

gradient of dqe perY__rbL_g po,_ntial_.
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PK2 1 - 5 " R+ 2zk _ (30)

F_- 5 - _ - -_
" r r

The procedure for applying the perturbation equations may be outlined as follows:

(a)

(b)

(c>

(d)

(e)

Reexpress the perturbation equations in terms of the p_'_rameters

P, Q, and G, and true anomaly, f, by substituting Eqs. (9), (12),
_d (30}for R, IR, and F, respectively.

Since the resultingequatlons are functions of true anomaly, itis
le_:itimateto take f = g/r 2, for a firstorder approximation. It

follows that the differentialequations with respect to time may be

tr:_nsformed to differentialequations with respect to true anomaly.

These perturbation equations are now written as Fourier polynomials.

Terms with constant coefficientsare transposed to the L. H. S.
_'

To obtain a first order solution for the system of equations derived

in (c),all parameters on the R. H. S. and the parameter g, wherever

itoccurs, are held cons,rant. Under these conditions, the system

can be solved exactly.

The perturbation equation for the parameter ffis treated similarly

with some modifications,

CarryLn_ out the operations indicated in (a), (b), and (c) the results are:

l

g

Q3 P P3Q3 Q_-3 P32 5-Q32 -]-- -_- - ---+ I,
e _k q p pq q_2 2 2 2 _J

P q

.... , "_ 2 Q3 fe 2
, -" _ 3 (e.._ e ),_u_2 _k -- sin 3 f+ e sin2 f+-_- sinf ---_._- cos 3 f

4 _- p q
g

(31)

2 ) P _ fP3 ._2 f5e 2 3e+oco 2f-  cosf *p \-7"/ \ - sin f+rsin4f

o 9

15e" 7 5e _ "_
+(7._, + 7._ ) sin3f*3esin2f+(7!+ --_-)sflnfj

P3Q3 ('5e 2
p q \ 8 cos 5 f

7 13 e2 1 7 e2) )+ 3e cos 4f+ (_+ _- )cos 3f+4ecos2f+(_+yi cosf
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Q:, 2
5e 2f /

sin5f+-- sin4f+ (4_+ -'_-'-)
.... 3e 7
' q / \16 2

sin 3 f+ e sin 2 f

(3e2
8

5 _ ze 2 e2 3]4) sinf -,\-_- sin3f+esin2f+ (1+-_-) sinf):

_--Q ("_-J \16 cos5f 7 cos4f4- -4-

q -
cos 3 f+ 3e cos 2 f

) (" Q3"_2 f 5e 2 3e 7 13+(5"4 e2) c°sf +\"_-/ \'_-c°s5f+'q-c°s4f+ (7_+ _'_-6 e2) cos 3f

9

7 9e 2 % P3Q3 (I 5e - 7 _ L,e2) skn 3 f
+ecos2f-(_+-g--cosf] P q \--_- sin5f+3esin4f+(_ ,

+ 4e sLn 2f+(e 1 "x /e 2 3e 2
_- - _) sh_ fJ+ k.T cos 3 f +ecos2f*(l+ --_-- ) cos f) i}

o P3 2 o2 P3
.... P3 __P: 3 Q -' Qo.,.' l,_2e ¢ 5 + " 1 , +

_+ 2 2 2 q p
:_ k_ P p:..2 P q

0

" '_K ! P3 fe 2_. L-- -_-k_--
cT

3e 2 f) Q3 fe 2
cos 3f+ecos 2f+ _ cos + _,\_- sin 3 f

(31) cont'd

+ e sin 2 f + e -- 5e2 3e
_- sin .]+ _ -_-./ -_ COS 5 f + _- cos 4 f

+ (7 25 5 7 f) fQ3"h2 y5c27,+ _-_e 2) cos 3f+ 4e cos 2f+ (_+ --e 2) cos -'\ q---J '\ i'--_cosSf

3e 7 5e2, 7 5e2 ) cosO + P3Q3 fSe___2
+ _-cos 4f+ ( + -_) cos 3f- (y_+_ p-'-'_-\ 2 sin 5 f
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2 2

7 _- - _) sin f)-(_ cos 3 f.-'3e sin 4f+ (_+ 3e2) sin 3f+ 4esin2f+ (e I_

4 e cos 2 f+ (I+ ) cos f -,_ _ q -p-Y \ 16 sln5f+ _- sin 4f

_+ ___e2) sin3f+5esLn2f+(Ti+_._--)sin - _-_-_-sin5f

3e 7 11e 2 .3e2
+ 7 sin 4f+ (7_+ _) sin3 f+ e sin 2f+ ( -_

5
_)sinf)

P3Q3 ('Se 2 7 21 2
P q \---_cos 5f+ 3ecos 4f+ (_+_-e)cos 3f+6ecos2f

1 3e2, ) /e 2 ___.)sinf)i}_ (_+ _) cosf -k.-_"sin3f+e sin 2f+ (i+ 3e2 (3 I) cont'd

o

G'+ 3u'_K2 _ _t:' __ + =_ __P3 Q Q3] xk
- 3 _p P q q_ -

Cr

9

, ._ _ __ e 3e /e
3 t.p _. p g cos 3f+ cos2f* _--cos + --q \_. sin3f+ sin2 f

(-r

+_cosf _i xk

where

( ), = eL__)
df

10
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Consider the system of homogeneous equations obtained by setting the

R. I!. S. of Eqs. (31) equal to zero.

3p 2K2P £ ¢n' ! k Q3t

£z g4 .- qf

3p 2 K o qz
",- k P3___

_£ 4 _ - pfg_
/.

p Q p 2 Q3f2
-_ P3t Q3£ -fi3 3_.___ + 5 - 1-]_ =0
pZ pf qf q_ 2 2 2 __P

+-Pf 5_ P3_ 3 3t i'_ = 0

pt 2 p2 +2 2 q£ pf q£
f qf

3_:2K2g_ ,_P Qf Q3f _

G' + ,, ,; { P3f +- _ xk= 0
-2 _ Pf Pt qf qt -

)L

It will become apparent that_P , _f, and G

terms of tff, (_, a_.d G, respectively.

f represent the long periodic

For this system of equations, Eq. (8), Q_Z = Gtx _Pf still holds. Since

It follows from Eqs. (32) that

P
, _-t • p,

P f PZ -i
=0

, 9t ,
q - "9

f qt £
=0 (3,z}

g' _0¢-- • G !

,_ o. --of f
=0

Therefore, for this system of equations, p_, q_, and gf are constant.

Similarly,

PZ q£ \ QZ _

=0 (34)

11
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so that

is const,_.t.

=B

O£ -P£ Q3£ 9_ P32
kX --= ......

- g_ P£ q_ q£ P_

itfollows that

2_. Pap,

'\ D, D_

Q_ Q3_hx I_£ G_P3_+Gf -P£ Q3£'_xk

q_ q_, fl - q_, -- __ qVj -

= G3___[-P_Q3k___ -Q;, P3£]_G3y,_kx__
g_ _ q_ -_ P_ g_ - g_

Therefore. Eqs. (32), can be rewritten as

7),'

_ r,
' P3_C kx _' --' 1- - k--, =0

Q'Z • o (_ _,_.! Q3t, kxGC -_2 t3- 1"_+ k
÷ Aq, L q--_- g_ p_ - p£ )

=0

G I
_ ,}

/a

r G3Z k G_Z
+ Ag_*. _ x _v = 0

.. ',gg - g f,

where A = --
3L_.2K2

4

g_

The third components of _P'z, _'_, andG '
are

12
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, %_-_-_)--o
P 3_, ÷ Ap£ q£ \2

3£ Aq£ p, _ _B)= 0 (39)

which form _ system of first order, linear, homogeneous differential equations

with consWmt coefficients. The solution is

P3Z P3o cos k._ B - - Q3o sin

Qo z = ? sin "A 5 5., 30 . _B- f + Q3o cos A _B-2
(40)

03;"= O?.o

where P3o' 030 ....G3o
!

ponents of _G c_re

are initial conditions. Similarly, the first two corn-

G3_ - 0
G / - A G2£

±L

(41)

_=0' +A
G 2_ O I_

This system has the solution

A I G3_ "G_:_ocos %;_,÷ s__A--_)
-L

where GIo

o_:-O_o_(__ _+_ocos(_°_0
uL g£

and G2o are initialconditions. Using the identities,

(42)

13



GIpG3_=__P3_Z QI_Q3_

gZ gz P£ PZ qz qz

G2_ G3£ = _ P2__Z_P3____2__ 72£ Q3£

g_ g£ P£ P£ q£ q_

Eqs. (4!) may be transformed into

(43)

G !

P_ PZ qz qz

S I

2Z

' ?Eqs. (,14) _o_ether with the identities

=0

=0

(44)

G1___9_= __ Q3_ P3¢ Q3_

gz P2 q_ P£ q_

G2£ = ___ QI_ Pl_ Q3_

determine the remaining com,_.one,,_":.s of _P rand _ which are

(45)

P£ f P3_. f" G2Z'x'
PI_ --A---B"_, PZ ,.. / - a G2,? Q3£\

g;, gg q_ J

_,, {_°__,__ _,r _'_

QI£ - --q_ {AG2£ P3_ Q3_(12_'_'

G I

__ {___ Q_ _
Q2_ -_ _Z P_ qz \ _-_-_"]_

(46)

14
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All quantities appearing on the R. H.S. of Eqs. (46) are Imown. After

some algebraic manipulation, the solution for the system of Eqs. (32) may be

expressed as
!__ l

iP,
I

t '

Pg

Q1

.j,

G 1

G 2

G_

C 0

0 C

0

0

0 •

C

f5 B-2) f I- sin A k._

cos A (_ B-2) f I

- y-

P3o

I Qto

0 Q2o

Q3o

Glo

G2o

I G3o
p

where

and

C

Icos A G3;_ f sin A G3---!Lf
g L g_

• _, G3L
- sin A "'_ f cosA-- f

¢¢ o"

0 0

i 0 0 _
I

0 0

o]
0

so_u-.on of Eos. (31) assume a solution of the formTo find the particular ' *_ . ,

(47) where -Po' -Qo' and -oG are functions of f. _abstituting soIution (47) into
! I I

the L. H.S. of Eqs. (31) will yield three equations for --Po ' -Qo ' and G O .

After solving for these derivatives, and recalling condition (d), -Po' -Qo' rand

G :nay then be found by integraP2on alene. If the second order terms kn t?Xs
--O

15
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solution are neglected, the results are equivalent to integrating the R. H.S. of

Eqs. (31) and adding the results to solution (47). The first order solution for

P, Q, G, is

_- -:f

D : p +Lp= -t s Jr
O

I_G -_fG =G_'+- S f
0

(4S)

where -Ps' Q-s' Gs' are the integr_Js of the R.H.S. of Eqs. (31), and the

quo_ntlties in brackets are to be ev_uated between the limits f and fo"

Tn the pert-urbation equation for o% Eq. (25) it may be noted that

R " F =-3_ R • F=--
- - dt

K the parameters a and g arc held constmnt at their initial values

(49)

Therefore, Eq. (25) may be re_Titten in the form

d < 3a
-- < _ * ---2°© (t - c o)dt L _z

Differentiation wi_ respect to time is transformed to differentiation with

respect to h-ae anomaly, and the R. H.S. is expressed as a Fourier polynomial.

The result is

16
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3a
d {or + .__oo _ (t =

d-t- g - qo )
3P 2K2a_ {- (_--_3) 2_5e2_.-_.: |-y_- cos 5 f

gP

+ _- cos 4f+\ 16 + 7 ( ._3e 5 5_cos 3 f +-_- cos 2 f+ _ cosfj

+ L 16 -_- cos4f+ 4"-i-6 e cos3f

3e de 2 7"% =
-_- cos 2 f + k._ - _J cos fj

fe 2 7"_ f_ P3 Q3cse 2
+k-g--7_jc°s j p q [. 8

P3 Q3 r 2
L_ _°P q _ sin4f (51)

e f7 e%
sin 5 f - _ sin 4 f+k._ - %--jsin3f

+ 3e sin2 f S3e2\T _'1) J_ r 2- + sinf!+ cos3f+e cos2f
' _4

1 e2"% _+ - -_-') cos f _
Jw

ttolding the par._meters on the R. H. S. constant, Eq. (51) is integrated to

yield

where q
S

3a © _f

cr = Cr° + _f(Ys - _z (t - O'o) ';.f (52)
O

is the integral of the second member of Eq. (51).

CONCLUSION

The solution (47) obtained has f appearing in arguments of sines and

cosines, these terms having two essentially different periods: 2:r/j (short

period where j is a natural number), and 2r,/A (long period where A is a

qumntity and equals 3_ZK2/g4).-- The solution i s well behaved for allS l'rl:lll

values of f because f appears in arguments of sine__ _,_a_._"_-'-_o:_,,_-and because

17
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these functions are found only in the numerator. This would not be the case ff

Eqs. (31)were integrated keeping allparameters constant; for then, the long

periodic terms in the previous solutionwould be replaced by their firstorder

approxim:ttions. This solution would grow linearly with time.

The next step in the usual procedure for deriving the second order

aporoximation consists in substitutLngthe firstorder solution for the parameters

Ln Eqs. (31). Before this step can be carried out, however, itshould be recall-

ed that Eqs. (31)were obtained by puttingdt/df = r2/g. Ifhigher order solutions

arc :o be found, this approximation is no longer valid. Therefore, for a second

order a?o:_oximation, dt/df must be replaced by itsfirst order approximation

derived from Eq. (28).

Xow suppose the parameters are replaced by their first order solutions,
3

terms of order K o are ncg!ected, and products of trigonometric functions are

replaced by trigo=ometric functions of sums. Under the follow_mg conditions,

the rcsuiti'_ equations may be h_tezrated to give a well behaved second order

soluti<_n:

(a)

(b)

No constant terms are p=esent

"Ykcnever cos _f or sin_f occurs (_ a small qu.,mti_), _ must

also appear a_ a fac,.o_ fi"_ t_e numerator.

-Fthese conditions are not _uk_,ed, and the equations are integrated,

f may occur ou'_{de "_ -- ,_ -__ tmoo,,o..et_le fr_nct:ozs, or small divisors may be present.

A possible so'_L'_!cr, to "_--_ z;:_'o ,'+"_,,,_:._ ___n_u_o:.es i_ obtak_ed as follows:

(a)

(b)

Denote '_t.e short perisxlicterms of the first order solution of

P, 90bvP _._ 0 o, f),'<_ ' 0 _Gs 0 o, f) and- '- "-s':o' -'_Po'9o' , (-Po'

assume a solution of the _.o....."- -P -P£ +--Ps (P£' -q#.' f)' -Q = -QZ

+ -Qs (_£' -Q2' f)' _G= _Gt + _Gs (-Pt' -_Q2' f) -P2' -Q0' _G£ are new

variables wNeh, to first order, are equivalent to solution (47).

Substitute these expressions into both sides of Eqs. (31) as

modified in accordance with the qualification regarding dr/dr

mentioned above. Neglect terms of order K23" expand into

Fourier polynomials, and neglect terms multiplied by sines

18
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and cosines. _P , _Qi, G are determined from the resulting equations.

Investi_.tions are currently being pursued for the purpose of finding the

second order solution by this method.

APPENDIX

EXAMPLE OF RAPIDLY VARYING PARAMETERS

Whenever per._arbationequations for a set of parameters are solved employ-

in_ :m approxir_c_te_nte_,rationmethod, itis always desirable that the parameters

be slowly varyLnT. Itis likelythat, for the polar oblateness problem., no set of

parameters exist in which all elements possess this characteristic. An example

is pre_ented to demonstrate the existence of rapidly varying parameters for ti_e

polar oblateness problem. Consider the equation

.. 3,_ K 2 - o_zz = _ ,'_ z_'_ •
z

3 5 _ - J
r r

which is obtained by taking the scalar product of Eq. (30) with k. Given the

to t o _'_' all d_,'b'-qves of z evaluatediniti:_[ conditions z ( ) = z ( ) : O, itfollows ,_..._ .......

_+_t - "_ are zero. Therefore z :.__:cntxca_y :,-to.
O

_:: fi:e following example it is to be assumed that this is the e_se. Then

G = Rx F-- 0 or G =G 3kwhere G 3 is aeonst_nt. Now introduce apolar

coordinate system, (r, @) in the x-y plume. From Eq. (30) two scalar equations

result:

.... .^. u 3 _-K 2
r -r(_/=-=_ ,,.

r r

i d (rZ_rd_ )=0

A particular solution of these equations is given by

b

19
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where ro,

r=ro, 8=8o4-tJ-_3

r
o

are constant. Shuee
0

3_K2
5

r
o

=--Tr= :j o,=÷

and

2
e cos f =__K__ _

_r
0

it follows that

3 uK 2

r
o

e cos f -

Also, r = O, so ..... .

3K 2

2
r

o

pr oe sLn f
Ii R=rr - -0
--- _ CT

As _ . _-._ _, Is sccn .; _,. e sic: f ==O. ,__qerefore, it may be concluded

that e -"_O, f--- O. Fr'om the e.l_at:en.....

e P Q__ - + sin f---R=r OSfp q/

one obtn b',s

P

It is clear tl=zt the vector P is always Ln the direction of the vector R_ and

is thus a rapidly .... :-'" . ,_,__ .... ,, oaranteter. Censequcutlv there is no guarantee that

fl_emethod of -'_" _ --- _," " _,_ "_'" flntegrationprocedure

will yield a saNsfacto_" solution.
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SUMMARY

This report describes a method for obtaining a first estimate of initial

values of the Lagrange multipliers for the "two point boundary value problem

of the calculus of variations."

This firstestimate is obtained by assuming the "two impulse orbit transfer"

problem to be a reasonably close approximation to the calculus of variations

problem.
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R

r

V

_V

AV _

k

T

m

m

X

tI

t2

X,

DEFINITION OF SYMBOLS

Gravitational constant

Vehicle position vector

]_R ! = magnitude of _R _,

Velocity vector of vehicle

Impulse velocity vector

e

I A v I = magnitude of _ _V

Magnitude o£ thrust

Unit vector in direction of thrust

Mass of vehicle

Mass flow

Constant, properuonal to specific impulse

Lagrange multipliers or adjomt variables

I__I = magnitudeof __

Component of i parallel to _R

Component of ), perpendicular to 1t

Time

Time at end of first thrust period

Time at beginning of second' thrust period

, !

vi
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INTRODUCTION

The method used to solve the two point boundary value problem of the

calculus of variations is one where the decision functions are such that all the

trajectories being used are extremals [1]. In addition to the state variables,

that appear in the equations of motion, there are a number of adjoint variables

or Lagrange multipliers that satisfy additional equations for the optimization of

the given system. The boundary conditions for the adJoint variables define the

natural end-point conditions of the state variables. This natural end point, in

general will not be the desired end point. A differential correction scheme

provide the means of obtaining another optimum trajectory, the natural end

point of which will be closer to the desired end point C2].

The equations of motion of the vehicle in the gravitational field of a single

body subject to thrust are' as follows:

oe

R = -_L + k
_ r3 _ T (1)

m (tB) = m (tA) + m dt (2)
tA

where m = - k and T is a unit vector parallel to the direction of thrust.
C m

The optimum decision functions are determined with the help of the

Lagrange multipliers,),, X, and ff which satisfy the following equations

_ 3u(X R) R_= ____+ ___
- r 3 5 (3)r'

tA

1



r

where
• k),

2 "
m

The thrusting program is determined by the sign of the switching function

S, which is given by

>0 k=k

(k Cr) max (5)S= _-_, <0 k=k
min

The direction of the unit thrust vector T_ is given by the direction of the

Lag'range multiplier k

X

T_=T C6)

The natural end point if reached when

Z (tF)= I (7)

The problem is to generate a set of initial values of the Lagrange multi-

pliers such that an optimum orbit can be computed, where the natural end

point matches the desired end point. This is accomplished by obtaining a first

estimate of the initial values and improving these by using a differential correc-

tion scheme.

One of the requirements necessary for a.rapid convergence of the differ-

ential correction scheme is that the first estimate of the initial values of the

Lagrange multipliers be reason_bly close. The following is a method for ob-

taining a first crude estimate of the initial values of the Lagrange multipliers.

2

I



I

I

I
I

!

I
I

I
I

I
I

I

I
I

I
I

I

INITIAI: VALUES OF LAGRANGE MULTIPLIERS

First Method

A first estimate for the initial values of the Lagrange multipliers can be

obtained by making the following assumptions about the trajectory.

(a)

(b)

Two burning periods are required to accomplish the optimum tra-

jectory, one occurring in the time interval t o to t 1 and the other

in the time interval t 2 to tf. During the time interval t 1 to t 2 the

vehicle is in a coasting region.

The time intervals in the thrust regions are so small that A V (to)

and AV_(tF) are obtained by solving the "two-impulse orbit transfer"

problem, where

iV(to) = V_(tl) - V(to)

V (tf) = V (tf) - V_(t2)

(8)

(c) In the regions of thrust the gravitational force may be neglected.

If in addition we assume that the thrust direction is fixed the differential

equations for the state variables and the Lagrange multipliers, within the burning

region reduce to

_, =_ c..___T (9)
i

"_£= o (_o)

where

t

(t) = _(t A) + _t A _dt ., (11)

cr_A
#=- _ (12)

Tiff . *

Q

3
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and

m (t) = m(tA) + (t-t A)

• In the burning regions the thrust vector is in the direction of AV_.

from Eq. (6) we have

AV

(13)

In the coasting region, re,and o' are constant. Thus, it follows that

Therefore

(14)

a (tl)= o"(t2) (15)

m(tl) = re(t2) (16)

For the computations of the initial values of the Lagrange multipliers, one

proceeds as follows:

I
m " (_vo+_vd
m m(tf) = re(to)e - o

f

_(tl) = _(to) = constant

(t2)=_(t_)=consist

_(tI)=__(to)+(tI-to)_ (to)

__(tf)= __(t2)+ (if- t2) _ (t2)

!
I

I

First Eqs. (9) and (I0)are integrated in the two burning regions to to tI

and t2 to tf, resulting in

AV o

m(tl) ,,re(to)• - "_ (17)

(18)

(19)

_2o)

(21)

(22)

where the time spent in the two burning regions is computed by using Eqs. (IS),

(16), (17), and (18), and is given by

I



AV
" O

re(to)(e c - 1)
(tt-to)= r_ (23)

AV ° AVf

C C

m(to) e (e - 1)
(tf- t2) = _ (24)

From the assumption that the thrust direction is fixed during each burning

interval it is evident that _ and X are in the same direction. Therefore only the

magnitude of __ and _ need be considered, i.e. ). and X.

and

At the transition times t I

X(tl) = _(Y(tl)

m(tl) c

_, (t 2) O'(t 2)

and t 2 the switching function must be zero.
!

Tht_S,

(25)

(26)

it can be shown that by integrating Eq. (11) in the two burning regions and

making use of Eqs. 412) through 426) one forms the _oUowing three independent

equations with five unknowns, i.e., a(to), k4to), X(to), _(tf)and X(tf)

c AVo

m(to ) _(to) - _ )_(to)= 0
(27)

AV___o AVf AV o AVf
C , _ m

m(to)- k (tf) + - --m(to ) e - ), (to)

AVf,

[o ) ]+ _m (_1"e'-g-,.+ Z_vf = I 428)

5
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0

AV

AV o AVf

re(to---"_ (to)-),(tf)J+ -e c . -e- -_ (tf)= 0 (29)

By making use of the transversality condition k'l_-X._}+ (;rh= 0 at times

and tfone can obtain two more equations.

_V(to).A V_o

I -x(t)- _v
O

crh

- re(to'--_ ),(to)+ (;(to)_h = 0 (30)

I

I
I

I

I

AV ° +AVf

-X(tf) V(tf). AVf, cih c
-- AVf" rn(to)e k(tf) +_ = 0 (31)

Eqs. (27) through (31) constitutefive equations with five unknowns. The

solution of this system of equations is given by : '

(AVe+ AVf

m/to) o _-Vo

X.(to)= C e _ .*'
B

(to) = 0

(32)

(33)

I
I

I
I

I

il

I

•(AV o + AVf)

C

_(to)= e

(AV o + AVf)

m(to) - c A_Vf

)k (tf) = --'_ e

(34)

(35)

(if)= 0 (36)

It is of interest to note that the magnitudes of A. at the initial and final times

are equal and, directly proportional to the mass at the final time. In addition, the

value of o" is also proportional to the final mass and may be expressed as

' m(tf)

cr(t)= m(t'---[ (37)

6
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Second Method

An approach for obtaining a better first approximation is to remove or at

least "relax" some of the assumptions made in the first method. More specifi-

cally, instead of completely neglecting the gravitational force in the regions of

thrust it can be assumed that the gravitational force has a constant value of

_R_o
in the first region and _ in the second region.3

r° rf

In addition, we assume },hat the d_re_tion of the total acceleration in the

two regions of thrust is parallel to the vector AV and __Vf, respectively. Tlus

implies that the direction of the thrust is not fixed.

It is clear that in the region of thrust the vector k_ lles in the plane formed

by the vectors _R and A_V. It is most convenient to resolve k into components

along the vector R and normal to it. These two components are designated as

),_ and _, , respectively.

The differential equation for k_.cau now be written as

= _ xr; (38)

The solution to Eqs. (38) and (39) is _ven by

r 3

3

r r 3

Since the intervals of thrust are assumed to be of short duration it is per-

missible to approximate Eqs. (40) and (41) in the regions of thrust by neglecting

the second order terms of a Taylor series expansion, i.e.,

7
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X_.(t)_X_Ito)+ it-to) _ (to)

_(t)_X. (t2)+ (t-t2) _k"(t2)

Similarly, one can approximate X in the regions of thrust to the same order of

accuracy.

_(t) _ 2/_3(t- to)X_ (to)+ _ (to)
r

it) _ - _ (t- to) X77(to) + X_(to)
r

to gt _;tI

_:_(t)_ _2_ it - t2)_k_(t2) +_ (t2)

XrJ it) _ - _3 It- t2)_k7) (t2) + )_O (t2)
r

t2_t_t f

(42)

(43)

(44)

(45)

(46)

(47)

The procedure for obtaining the initial values of the Lagrange multipliers

is now the same as in the first method except that Eqs. (19) through (22) are now

replaced by Eqs. (42) through (47).
¢.

C ONC LUSION

A set of approximate initial values of the Lagrange multipliers have been

derived. In addition, a p_ethod for obtaining a better first approximation has

been outlined. It should be pointed out, however, that as one attempts to obtain

these improved first approximations in the manner outlined, the algebraic mani-

pulation of the expressions involved become more cumbersome and additional

approximations may be needed.
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ABSTRACT
,f

0:p

Dirac's generalized ttamiltonian dynamics is described m_d applicxl first

to a particular optimization problem and then to a general class of such problems.

It is sho_ that the Dirac formulation leads to a ttamiltonian to which the

Pontryag-in Maximum Principle can be applied. Further, this tiamiltonian has

the property of being canonical in all of its varimbles, and is thus susceptible

to treatment by the methods of classical celestial mechtmics. The report

closes with a brief discussion of how perturbation tectmiques, based on the

Dirac Hamiltonian, might be developed for the solution of optimization problems.
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I. INTRODUCTION

The purpose of this report is to formulate a generalization of the

Pontryagin approach for application to optimization problems. This generali-

zation will add nothing new to the basic equations to be solved, but is, rather,

intended to lead to perturbation procedures for the solution of these equations.

In the Pontryagin formulation of optimization problems a function which bears

close resemblance to a ttamiltonian function is introduced. It differs from

most classical Hamiltonian functions in two respects: First, the classical

Hamiltonian for most problems in dynamics is quadratic in the momenta

whereas the Pontryagin Itamiltonian is linear. The second difference is that

the Pontryagin Hamiltonian is canonical only in the state variables .and their

conjugate momenta. In the Pontryagin approach, the control variables are

determined, not from tlamilton equations, but by the Pontryagin maximum prin-

ciple which says that the Hamiltonian must be a maximum in the control variables.

The generalization consists in defining a new tlamiltonian, to which the maximum

principle can still be applied, but which is canonical in all the variables. The

advantage of this new Hamiltonian is that all the methods of classical dynamics

now become available for the solution of the problem. In particular, the classi-

cal pertm-bation theories can be applied for obtaining successive closed form

approximations for the solution. Most current efforts to solve optimization

problems involve numerical integration with the serious defect that initial values

of the momenta must be found from an initial set of trial values by some differ-

ential correction procedure whose success will in general depend on how close

these trial values are to the actual initial conditions.

The construction of the new Hamiltonian is based on a technique developed

by Dirac for problems in which the Lagrangian function is linear in the velocities.
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It is shown in Section III that the construction of a Hamiltonian for such problems

involves special difficulties that are not present in the usual I)roblems of

classical dynamics for which the Lagrangian is quadratic in the velocities.

Dirac's motivation for this work was his interest in relativistic gravitational

fields and quantum electrodynamics. In both problems the Lagrangian is

lincar in some of the generalized velocities, so that the difficulties that are

involved in the construction of a Hamiltonian are identical with those involved

in optimization problems. Thus the Dirac formulation, although not originally

intended for this purpose, can be applied to optimization problems.

It will be seen that the new IIamiltonian, which will be referred to as the

Dirac Itamiltonian, will be linear in all the momenta problems for optimization.

This fact makes it very attractive from the point of view of development of a

Hamilton-Jacobi perturbation theory since the ttamilton-Jacobi equation will be

a linear partial differential equation of first order.

Section II presents some general background material. In Section ILl,

the construction of the Dirac Hamiltonian is discussed in some detail. Section

IV presents a development of the Dirac Hamiltonian for a time optimal point-to-

point transfer problem. In Section V the connection between the Pontryagin and

Dirac Hamiltonians is discussed for the example of Section IV, and in Section V

the theory is extended to more general problems. Finally, Section VII presents

a brief discussion of the ways in which perturbation procedures might be developed

for the solution of optimization problems.

II. BACKGROUND

In the Pontryagin formulation of optimization problems, the variables are

classified as state variables x i which must satisfy certain equations of motion

and control variables Yi which appear in the equations of motion:

ki = fi (x,y) , i = 1,2,...n. (1)
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From the state variables x. and a set of adjoint or conjugate variables _i a1

tiamiltonian function ttp is constructed which is canonical in the variables

x i and their conjugate momenta $i" That is, the Hamilton equations

5Hp
5Hp _i- 5x.

9 9
(2)

arc satisfied. The ttamiltonian is constructed so that the tlamilton equations

for x. are just the equations of motion, and the equations for $ i serve to define1

the conjugate functions $i. The tiamiltonian Hp is not canonical in the control

variables Yi since no momenta conjugate to the Yi appear and hence the Yi are

not given by partials of IIp with respect to their momenta. The subscript P is

used to distingmish the Pontry,_in ttamiltonian from a conventional Itamiltonian

which is canonical in all of its variables.

For a problem which optimizes x ° with

_¢ =f (x,y),
O O

an additional variable _o is introduced and the Pontryagin Hamiltonian has the

form
n

Hp = i_ _)ifi (x,y) .

i=0

(3)

(4)

For a time optimal problem f = 1, and it is shown (p_ge 20 of Ref. 1) that $oo

is a negative constant, which may be taken as -1 without loss of generality.

As mentioned above, the Pontryagin ttamiltonian is not canonical in the

control variables. The control variables are determined from the Maximum

Principle which says that Hp must be a maximum in the control variables if the

optimization is a minimization. It is shown in this report that a technique

developed by Dirac may be used to define a Hamiltonian H D which is canonical

in all of the variables. This Hamiltonian is usable as a Pontryagin Hamiltonian

for application of the Maximum Principle and has the added advantage that the

I



transformation theory of tiamiltonian dynamics is now available for the solution

of optimization problems. It is evident from Eq. (4) that HI) is linear in the

momenta _i and this property will also hold for the Dirac Hamiltonian IID,

which in fact is linear in all the momenta Pi conjugate to the coordinates qi'

wt_ich will be seen to include not only the state and control variables, but also

the Lagrange multipliers associated with the Lagrangian formulation of the

problem. Thus, for example, the Hamilton-Jacobi equation obtained by substi-

tuting

S(q, c_)

Pi - 5 qi
(5)

in tt D will be a linear partial differential equation for the generating function S.

Its solution would lead to a canonical transformation, defined by S, to new

canonical variables _i and Qi obtained from Eq. (5) and the following equation:

5 S (q,(_)

Qi = 5 _. (6)
1

The Hamiltonian may be written

H D = H D (c_i) (7)

in terms of the new variables, so that

5 It D 5 H D

(_i- 5Qi -0 Qi = 5(_i - vi =c°nstant (8)

or

Qi =ui t+/3 i . (9)

Even if the Hamilton-Jacobi equation is not solvable, the standard perturbation

procedures of celestialmechanics would now be available by writing H D as the

sum of lID0 and HD1 with HD0 selected to represent a solvable problem and HD1

treated as a perturbation (Ref. 2, pp. 62-74).
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In order to obtmn the Dirac Iiamiltonian ttD, it is necessary to start from

a Lagrangian formulation. For a time optimal problem the Lagrangian function

is

n

L= 1+ . ki_¢i- fi(x'Y))

i=1

(10)

where the ),. are the usual Lagrange multipliers associated with the equations1

of motion regarded as differential constraints. To pass from a Lagrangian to

a ttamiltonian formulation, one first defines momenta Pi conjugate to the

variables qi (which include the xi, Yi and ),i) by the equation

5L
Pi-

For the Lagrangian (10), the momenta conjugate to x i, Yi and )'i are

5L 5L 5L

Pxi =5_k--_-= Xi' P_.i - _i 0 , Py_. =_5_ri
=0

(11)

(12)

The Hamiltonian is conventionally defined as the function

n

H= •_ Pi_li - L"

i=l

(13)

It is readily shown that this Hamiltonian is a function only of the q's and p's and

is independent of the tl'S. This is done by considering the variation in H produced

by variations in the q's, ¢l's and p's consistent with the defining relations (11)

for the p's, but otherwise arbitrary:

n n n 5L n 5L

i=l i=1 i=l i=1

n n

_t i 5p i _ _L 5q i

i=1 i=1

(14)

5
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The variation in II is independent of the variations in the it's and hence it must

be possible to write tl in such a way that it depends only on q's and p's. In

conventional problems in dynamics, Eqs. (11), defining the p's, may be uniquely

inverted to give the /l'S as functions of the q's and p's. These expressions for

the it's may then be substituted for tI in the defining Eq. (13) to give a unique

expression for H as a function of q's ._nd p's.

For the optimization problem, with the Lagrangian (10), the relations of

Eq. (14) still hold, so that the Itamiltonian is still independent of the _l's. It is,

however, no longer unique, as may be seen by direct use of Eqs. (12) and (13):

n n

i=l i=l

#

n n n

Pxiki + _ Pki k i + ___ Pyi_ri - 1-) Xi (f¢i-fi)

i=1 i=l i=l

#

n n n n

=_(,Pxi_Xi)_i+S pk. _ i '(+ /_Pyi:_i - 1÷7
i=l i= 1 1 i= 1 i= 1

X. f.
1 1

(15)

n

= L )'i f'l- 1,

i=1

#n = number of control variables

since the first three sums vanish by virtue of Eqs. (12). One can again make

use of Eqs. (12) to write the Hamiltonian as

n

HI i_ f.-1= Pxi 1

i=1

(16)

which has, of course, the same "value" as H, but has a different functional form.

The form (15) would require that all velocities vanish if it is considered as a

"true" Hamiltonian, canonical in its variables. The form (16) is substantially

the Pontryagin Hamiltonian and is canonical in the state variables.

6
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III. TttE DIRAC IIAMILTONIAN

In References 3 and 4, Dirac has developed his ttamiltonian formulation

for problcms in which constraints among the coordinates and momenta are

implied by the defining equations for the momenta. The treatment in Reference

3 is more detailed and also more difficult to read than that in Reference 4.

Most of the development in Refcrcnce 3 is for a Lagrangian homogeneous of the

first degree in the velocities. While this restriction1 involves no loss of general-

ity (the i,.%grangian may always be transformed to this form, as shown in Refer-

ence 5), it does not appear in Reference 4. The results of the two analyses are

substantially the same. The treatment in Reference 4 is in a form more useful

for optimization problems. The contents of References 3 and 4 are presented

below, for direct application to optimization problems.

The starting point for Dirac's development is a Lagrangian which is a

function of N generalized coordinates qi and their velocities _ti •

L = L (q,_l) (17)

from which momenta Pi conjugate to the coordinates qi are defined by

_L

Pi = 5 _ti (18)

As noted in Section 11, if Eqs. (18) may be inverted to give each _t i as a unique

function of the q's and p's, the classical I[amiltonian development follows. If

this is not the case, the classical definition of the Hamiltonian becomes ambiguous,

as illustrated by Eqs. (15) and (16). Actually these two equations are special

cases of an infinite number of forms for the Hamiltonian:

H I + _ am¢Pm

m
(19)



where tI 1 is any form such as in Eqs. (15) or (16), the a m are arbitrary functions

of the q's and p's, and theo's represent the constraints among the q's and p's

implicit in Eq. (1-8)defining the p's:

_m (q'P) = 0 (20)

These constraints may arise because some of the }l'Sdo not appear in Eqs. (18)

or because of redundancy of these equations in the q's. Strictlyspeaking, the

expressions (19) cannot really allbe regarded as Hamiltonians since by a

HamJltonian one usually means a function of coordinates and their conjugate

momenta such that the Hamilton equations

_ _ II _)i= "_II (21)

I

i

I

I

I
I

I
I

I

I

are equivalent to the equations of motion of the system described by the

Lagrangian L. Thus, the question that Dirac asks is "How may coefficients

u be chosen from all arbitrary coefficients a in Eq. (19) so that, given somem m

H 1 satisfying

HI= _ Pi _ti- L (22)

i

the function

II = H 1+_ Umq_m

m

(23)

is the Hamiltonian for the Lagrangian system L?" As shown in Section If, the

function Ill, defined by Eq. (22), may be regarded as a function only of q's and

p's. Since theo m are also functions only of q's and p's, the function H of Eq.

(23) satisfiesthe first condition for a Hamiltonian, i.e., itis a function only of

coordinates qi and their conjugate momenta Pi" Itremains to determine the um

as functim_s of the q i and Pi such that the Hamilton equations describe the motion

of the system. It will turn out that the Harniltonian so obtained is not unique. The

essential reason for this is discussed at the end of this section.

8
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It is necessary to make a few remarks about the functions Om before

proceeding. These functions are assumed to form a complete, independent set

of constraints on the q's and p's implied by Eqs. (18). The term"independent"

means that no constraint, say _k' is implied by the remaining constraints. In

this connection, it should be noted that independent constraints (Pk = 0 and

independent functions _k are not synonomous terms. The functions q and q2

• q2are independent but the constraints q = 0 and = 0 are not independent; each

implies the other. _I1_c term "complete" means that every constraint implied by

Eqs. (18) is also implied by Eqs. (20) and conversely. It is obvious that the

number of constraints M cannot exceed the number of coordinates N. If the

Lagrangian is independent of some velocity, say _tk, it follows that the momentum

Pk conjugate to qk vanishes so that one constraint would be

_1 = Pk = 0 (24)

If the Lagrangian is homogeneous of the first degree in the velocities, the

momenta will be homogeneous of degree zero in the velocities and hence depend

only on the ratio of the velocities. Since there are only N-1 independent ratios

of velocities and there are N p's, at least one constraint among the q's and p's

must exist. Still another way in which constraints might arise occurs when the

velocities _t1 and tt 2 appear, for example, only in the form tt 1 + t]2" Then

Pl = P2 -
_L

3(t] 1 + tt2)
(25)

and the corresponding constraint is

_=Pl -P2 =0 (26)

In the following development the assumptions made on the nature of the

constraints is that they be independent, complete, and differentiable. The pur-

pose of this last condition will appear immediately.

It has already been seen (Section H) that the variation in H1, induced by

variations in the q's, _l'S and p's consistent with the defining equations for the

momenta, may be written
9
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The condition on the variations in the q's, tl'sand p's implies not only that Eq.

(18) holds (thiswas used to cancel out the 6 [lterms) but that they be such that

the induced variations in the _'s shall vanish -- that is that the constraints not be

violated. Thus, the following relations among the 6 qi and 6pi hold:

(27)

:_'¢Pm 5 Pi = 0 (28)5_m 5qi+ ) 5Pi8_m = ) 5 qi
i i

These equations may be interpreted as saying that of the 2 N variations, 6 qi

and 5pi, some M may be determined in terms of the remaining 2 N - M. At

thispoint the me,_ming of the independence of the _'s may be more precisely

stated: the o's must be such that Eq. (28)form a consistent independent set of

linear equations in the 5 qi and 6pi.

Recalling that H 1 is a function only of the q's and p's, and using the condi-

lion of differentiabilityon L which implies differentiabilityof H 1 with respect to

its variables, one may write the variation of H 1 in the form

H 1 5 H 1

= 6qi + _ 6pi (29)
i 1

If there were no constraints the 8q i and 8 Pi could all be regarded as independent

and matching coefficients of the 8q i and 8Pi in Eqs. (27) and (29) would lead to

the usual ttamilton equations. With constraints present, one may proceed as

follows: Multiply Eq. (28) by the undetermined multiplier (-Um) and sum over

m, add Eq. (27) and subtract Eq. (29) to obtain

=0
_'\'tli 5Pi 5Pi J 5qi 5Pi _Um 5qi
i m i m

10

(30)
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Now tlfink of some M of the 5 qi and 6pi as being determined in terms of the

remaining 2N - M by Eq. (28) and require that the u be such that the coeffi-
m

cients of these M variations vanish. The remaining (2N - M) 6 q i and 6pi may

now be regarded as independent, so that their coefficients must also van.ish.

Thus all coefficients in Eq. (30) are to vanish and, making use of the Lagrange

equation s

d 5L _SL

I one obtains

(31)

i bH 1 5_ mtli - + _- Um
Pi _ 5Pi

I

I

I

m

5 H 1 _ u _0 m

iSi= 5q i ' m 3qi
m

Since the Om all vanish, it follows that for any variable x

5 5(pm 5 u m 5_m

3-'xUm_m =urn 5x +¢¢m }sm =um 5x

and hence, defining the Dirac Hamiltonian

(32)

(33)

HD= Hl+_Um(Pm (34)

one may conclude that H D is a ttamiltonian with Hamilton equations:

}5HD }5H D

I (li- I)i-5P i 5q i
(35)

I

I

I

The coefficientsum may be determined as functions of the q's and p's as

follows. The equations of motion (35)obtained from the Hamiltonian (30) must

be consistent with the constraints (20). This means that not only must the q_m

vanish, but so must their time derivatives. That is, for each m

11
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=_ 50m _t +'_ 5%9mf_iqi3 i 5Pi
i i

"-i
1 m

(36)

cq:)m "\

1 m

It generally happens that no u's will appear in some of Eqs. (36). In this case,

additional constraints among the q's and p's appear, whose time derivatives

must also vanish. Those constraints associated with the defining equations for

the p's are denoted by ¢0m and are called primary constraints. All other con-

straints are denoted by Xi and are called secondary constraints. Only the

primary constraints appear in the Hamiltonian. All constraints must have

vanishing time derivatives, so that secondary constraints arising from ¢bm = 0

may lead to additional secondary constraints. This process of equating time

derivatives of constraints to zero must be repeated until no further secondary

constraints appear. There will then remain a number of equations for the u
rn

which may be insufficient to determine all M of the urn. The case in which the

remaining equations are insufficient to determine all of the Urn requires special

discussion. Any inconsistency in either the constraining equations or the

equations for the u m indicates an original Lagrangian formulation containing

inconsistencies.

To see how this process works in detail, it is desirable to introduce the

Poisson Bracket notation. If _ and 77 are two dynamical variables (functions of

q's and p's) their Poisson Bracket (P. B. ) is defined by

_ 5qibPi 5pibqi
i

(37)

12
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from which it follows immediately that

[_,_; =- En,_] [_,_] =o

[ _,_ ] = [ _,_ J + _._,,_

The usefulness of this notation lies in the following relation"

_=_ _--_--_ti b--_fDi_
b qi + bPi J

i

i

where use has been made of the ttamilton Eqs. (35).

(34) for Hl,one obtains

_---[_,",+.i.U_Om]
m

Recalling the definition

=[_' H I +_Umi_,(Pm i+ _q_mi_.Uml

m m

:___, H1J+_umi_t(Pm!

m

on making use of Eqs. (38).

The condition that a primary constraint have vanishing time derivatives

may now be written

13
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_i =L@i' HI.j + ,,_ Umh49i'49m-] = 0

m

(41)

It may happen that for someq_ k, [¢;}k' ¢Pm ] vanishes for all m, and in this case

hok, HIJ = 0 :X1 (42)

would appear as a secondary constraint. Secondary constraints could also

arise by elimination of u's among some of Eqs. (41). Let the independent

secondary constraints obtained from Eq. (41) be denoted by Xi. It is now re-

quired that all _<ishould vanish; that is

T<i :[)<i , H1]+ _ Um [Xi,Omj (43)

in

and Eqs. (43) may lead to further secondary constraints.

constraints have been found, there will remain a number of indepcndent linear

equations in the u
m"

It is now necessary to provide a further classification of the constraints.

A constraint is defined as first class if its P.B. with H 1 and with every other

constraint vanishes either identically or by virtue of the constraints. All other

constraints are second class. Suppose that a set of the primary constraints,

denoted by Ok, is first class. It follows that

: [ [ JI ]__ -] -IL_' xi , ½' _mJ = _' xi = 0

When all the secondary

(44)

Thus

=0

_m' =iq_m '' HI] Z r ]+ u m L_m,, q9m j = 0 (45)

mi/k (cont'd on next page)

14
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_(i = _Xi' Ill j + ) Um Xi' _m i; 0 (45)
J

rock

(cont'd)

and none of the equations requiring time derivatives of the constraints to vanish

contain the uk. Therefore, the u k are undetermined and the first class constraints

appear in the tlamiltonian H with undetermined multipliers. Dirac shows in his

paper that the nmltipliers associated with the second class primary constraints

are uniquely determined by those Eqs. (45) corresponding to the second class

constraints. The equations corresponding to the first class constraints, whether

primary or sccondary, yield no information of the u's.

The Dirac Itamiltonian, given by gq. (34), is now determined in terms of

any II 1 consistent with Eq. (22) and the u's determined from Eq. (45). The u's

so obtained will, of course, depend on the particular form selected for It 1. The

Dirac Hamiltonians obtained from different choices for H 1 may appear, at first

glance, to have different forms. This brings up the question, noted at the be-

ginning of tlfis section, of the ambiguity in the Dirac tIamiltonian. It is, of

course, immediately obvious that first class primary constraints introduce an

ambiguity since their u coefficients are undetermined. There is a further ambiguity

which arises from the fact that the Hamiltonian has been constructed to be a

function only of q's and p's. Further, the Hamilton equations are satisfied and

are such that all constraints are maintained. The validity of the Hamilton

equations was obtained from the first order variation of H I and the ¢)'s. Now,

suppose that some function g (q,p) is such that its first order variation

= _ 6Pi
bq i -_bP i

i i

(46)

vanishes by virtue of the constraints. Such a function is (ok 2 or cos (Ok :

15
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f 2 =
5 _q3 k ) = 2q_ k 60k 0 since (_k

5_cosqa k = - in Ok/SOk = 0

=0

since sin ¢k = 0

(47)

Since any such function may bc ,added to the I)irac IIamiltonian without changing

either the IIamilton equations or the validity of the constraints, an additional

ambiguity is introduced besides that inherent in the existence of first class

constraints. The Dirac IIamiltonians obt_ned from differcnt choices of H
1

all lead to the same final equations of motion and all maintain the same con-

straints. Hence, they must differ only by functions whose first order variation

vanishes.

I

I

I

I

I

I

!

!

The introduction into H D of additional terms whose first order variation

vanishes has a very practical application: itfrequently makes possible the elimina-

tion of some of the variables from the IIamiltonian, a_nd reduces the number of

equations wl_ich must be solved. Just how this works is illustrated in the time

optimal orbit transfer problem discussed in Section IV.

IV. TItE DIRAC FORMULATION

FOR A TIME OPTIMAL TRANSFER PROBLEM

This section illustrates how the Dirac Hamiltonian formulation is applied

to optimization problems for the following time optimal transfer problem. For

simpliciW, the two dimensional problem is chosen. The state variables are the

coordinates x and y, their time rates of change _ and 7), and the mass, m. It is

assumed that initial and final values of all state variables are specified. The

control variables are 0, the direction of thrust, and the rate of fuel flow which

is assumed bounded between zero and some fixed upper limit 8. Thus, the

equations of motion for the problem are:

2
=_ __ 5V +c2c°s sine

5x m

I _ =77 __ 5V +_ cos2_
5y m

2

I _=_Bco s

16
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where the thrust is, of course, -cn'_, _md the constraint on the fuel flow is

carried by the variable _. Forces other th:m thrust acting on the vehicle are

assumed derivable from a potential functi(m V(x,y) dependent only on position

of the vehicle. The transfer time is to be minimized, subject to the equations

of motion (48), which are to be regarded as differential constraints. Since the

Dirac formulation can give information only on first order variations in the time

integral of the Lagrangian, no information on the nature of the extremals for

this integral appears in this section. In the next section the Maximum Principle

is incorporated in the theory, and discussions of the nature of the solution ob-

tained in this section are thus deferred. Introducing Lagrange multipliers, the

Lagrangian for this optimization problem is

L= 1+ k l(f:- _)+ h 2 (_-r})

(_ i}V c f_ cos2 (_ )+ k 3 +=--- - sin 0ex m

/ 5 V c fl cos 2 q
+ k 4 \-_f_+ :-'- - cos 0_y m J

2
+ _5(,_+ _ cos _)

(49)

The Lagrangian L contains, explicitly, the differential constraints and the bound-

ing constraints on nh. It does not, however, contain the constraints on the initial

and final values of the state variables. This omission means that the constants

of integration from the tIamilton equations must be ultimately used to determine

initial values for the control variables and the Lagrange multipliers. It will be

seen later that this represents a serious defect in the theory, and that an effort

should be made to find a Lagrangian formulation which explicitly includes all

constraints on the problem to be solved.

In the Lagrangian (49) the state variables x,y,_,r_ and m, the control

variables e and _, and the Lagrange multipliers k. will all be regarded as1

coordinates. The only velocities appearing are those corresponding to the

state variables. The momenta conjugate to the coordinates are obtained by

differentiation of the Lagrangian with respect to the corresponding velocities:

17



Px=)`

py k 2

P_ = k 3

Pr_ )` 4

Pm X5

Pk. =0
1

p0 = 0

pc=0
(50)

No velocities appear in the defining equations for the momenta and thus all of

these equations represent primary constraints. Further, all of the constraints

are independent. The constraints are labeled as follows:

I (_2

°l=Px-kl = 0 06 =Pk = 0 (Pll =pO =0
1

:py- k 2 =0 ¢7 =p)`2:0 Cpl2 =p(_ 0

= p_ = 0_8 A 3

= p, = 0(_9 A 4
= =0

¢10 Pk 5

i _3 = P_ - k3 = 0

O4=p_)- k 4 = 0

05 = pm-k5 = 0

(51)

The functSon H 1 is selected to be

= 5V c_c0s2_ sin 0) (52)H1 kl_+)`2 _-)'3(-_x - m

$5 V c/3 cos 2 ¢¢
m

which is consistent with Eq. (22).

"_ 2
cos 09 - )'5 # cos a- 1

To obtain the expressions for the O's, it is necessary to obtain the P. B. '

of the _)'s among themselves and of each ¢ with H 1. The P. B. 's of the ¢'s

among themselves are

18
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@1 u6 + X3 b 2V _52V =0
=- ---+ k45xSyx 2

02 u7 + X3 52V 52V=- + X4 2 -0
_xby my

_3 =-uS- )'1 =0

_4 =-u9-)'2 =0

(_5 - Ul0 + cfl cos2_= 2 ()'3 sin e+X 4cos e)=0
m

2
V cRcos (_ sine =0

_8 = u3 + 5 x m

(_9 = u4 + 5__V_V_ c B c os2 c_ cos e = 0
5y m

2
(_10 =u5 + Bcos c_ =0

_11 =- m (k 3 cos 9- X4 sin e) = 0

(_12 =flsin2_{c (X3 sine+ k 4cos e)-),5}=0

It will be noted that the first ten _'s give immediately the first ten u's. No

u's occur in the last two and hence the requirement that,11 andS12 vanish

leads to two secondary constraints:

2O

(55)
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_(91, _6 _ = _ [06, c91_

[(92' _7 ] =-[¢07' _2: _ =- 1

E_3, _s_ =_ Eos, _3 J = _:

[°4' _9 _ = - E_9' _4 _ = - :

[(_5' ©10_=-[(_10'05 _=-1

q_j] = 0 (53)all other L@i,

and the P.B's of the _'s with H 1 are

: H:] = -p_6'

[_2' HI] = )'35 2V5xSy + ),4_ 2V2 [_7' HI] = -r_

[_3' H:: = - ),:
5V c_cos2c( sin O

[_8' HI_=_x-- m

['(P4' HI] = - X2
cB cos 2 cos 0

:¢9'Hl_:_y v- m

2

7_5, H1 ] = c_cos2 c_ (k3sin0+),4cos@)
m

2
[_10' HI] = f_ cos

2

:Oll H1 ] =_C2cos ff ()`3 cos @-)`4sin @)' m

[_12' HIJ = _ sin 2 (_ Lm (X3 sin O + )`4 cos 0) - )'5 (54)

The time derivatives of the _'s are obtained by making use of Eq. (40) and they

must be equated to zero:

19
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2
Xl = cos (_(k 3 cos 0- k 4 sin0) = 0

X2=sin2( _{c(k 3 sin0+ k 4 cos e)-X 5} =0

(56)

where the factors c, f_ and m, known to be nonvanishing, have been omitted.

These secondary constraints are, in a way, somewhat embarrassing since

they both appear as products, so that further discussion requires consideration

of the various combinations in which the faetors may vanish. The occurrence

of this problem is, however, not surprising; it is just the way in which the

"switching function" in the conventional theory would first appear. To complete-

ly specify the "switching function" requires consideration of second variations

to distin_mish minima from other stationary wdues of the time integral of the

Lagrangian. There is no provision for this in the Dirac theory, and further

discussion of this point will be deferred. First, the Dirac Hamiltonian is

obtained and in the next section the way in which the Maximum Principle

complements the Dirac theory is discussed.

The ways in which the vanishing of the X's may be guaranteed are:

Case I. cos _ = 0

Case 2. since= O, k3 cos O- k4 sin 0 = 0

Case 3. k3 = k4 = k5= 0

Case 4. k3 = k4= sincy= 0
e

Case 5. k3 cos O-k4sin 0 = O, -_ (X3 sin O +_4 cos O) -)'5=0

For a complete analysis of this time optimization problem, each of these

possibilities should be examined in detail with recognition of the fact that the

nature of the problem may require the use of different Hamiltonians for differ-

ent portions of the final optimum trajectory. Since, however, the purpose in

this report is merely to illustrate the application of the Dirac teehnique to op-

timization problems, only the first two possibilities are discussed. These

correspond to the conventional solution of the problem by the Pontryagin

principle. It might be mentioned that the occurrence of possibilities 3,4, and 5
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is a direct consequence of the inclusion of the constraint on fuel flow, by the way

in which the variable _ is introduced in the Lagr,_gian. Conventional treatment

of the problem does not include a direct constraint on the fuel flow.

It is readily shown that the constraints in case 3 require as further

secondary constraints that )'1 and )`2 should vanish, which implies that the

momenta corresponding to the state variables all v,_nish. This solution is

thus incompatible with the requirements of the Pontryagin principle. The re-

maining two cases appear to represent singular solutions to the problem, in

some senses. The detailed analysis is not yet complete. If the final results

are significant, they will be given in a later report.

The construction of the Dirac Hamilto_li,xn for cases 1 and 2 is now

carried out, and in the next section its connections with the Pontryagin

Hamiltonian are developed.

• Case 1 For this case the single constraint

X1 = cos c_ = 0 (57)

replaces the two constraints of Eq. (56)• The time derivative of X1 is obtained

from its P. ]5. 's with the @'s and H r All the P• B. 's except [ XI' q_12 _ vanish,

so that

X1 =- u12 sin_ = 0 (58)

requires that u12 vanish. No further secondary constraints appear, so Ull

is undetermined, which would imply that (Pll is first class. This is readily

verified. The P. B. 's of _11 with all the other _'s and with X1 vanish, while

[¢011, H1} vanishes by virtue of Eq. (57) and the first of Eqs. (56). This is a

reasonable result: it says that the variation of e plays no role in this problem.

Since Eq. (57) implies that the thrust vanishes, it is evident that the direction

of the thrust is irrelevant. The Dirac Hamiltonian may now be obtained from

the definition given in Eq. (34), with H 1 given by Eq. (52), the $'s from Eq.

(51), the first ten u's from Eqs. (55), Ull undetermined and u12 = 0:
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H D= H I+'i UmO m

m

:> V e 8 eos.52_L_._sin 8
= x lg + x 2_- xa\_x m

2 ) 2cosO -)'5flc°s _-1,:'5V
- X4 H 5--y - m

2 -.

<_V c f_ cos__._ sin 0)(i 3
+{ (Px-X1) +7)(py-k 2)- 5x m

I 2 . 2
_ ,:'____v_eeo_g2_92._ cos e/(p_ - >,4) - 5 cos ,y (Pro - X5)

I
I
I

- x3)

I

I

I

I

I

I

I

I

"- 5 y m

r,2V :" ;-_2v + ),42)52V k4 7_x _ y> + pk2 \),3 _(x _ y
+ P),I Q>'3 5x---2-+ ---

2 . o)
XlP)'3 £2Px4 + __')`3 sin e+ X4cos PX5 +ullpo-- -- 2

m

(59)

2 "\

2 _) :_v _eos o)c_ sin - Pr} k._-- m
,:5 V c 2 cos

= px $ + Py r) - P$ _;-7_x -- m

,: :,2V fiV )+pk2<),3 B2v :'2V'"2 <x37_+_'47;_,y _--¢gy_)`47yy2.;
- Pm f]e°s _-I+P)`I ox

2

c___cos a ()'3 sin O+ k 4cos O) p)'5 +ullpO
- >'1 PX3 - X2 PX4 + 2m

It may be noted that the momenta conjugate to the state variables have replaced

the X's in H 1, and that these terms just comprise the Pontryagin Hamiltonian.

The essential difference between the Dirac and Pontryagin Hamiltonians is, thus,

the appearance of terms in the momenta conjugate to the ),'s and the control

variables. While it is true that all these momenta vanish (by virtue of the

primary constraints) their presence in the Hamiltonian is still necessary if a

Hamiltonian canonical in all its variables is required. By the same token, the

2cos c, terms must be included even though the constraint (57) says they vanish.

The ttamiltonian will then have a functional form leading to Hamilton equations,

which, together with the constraining equations, may be used to solve the problem.

23
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• Case 2 The constraints

= sin (y = 0
1

_2 =)'3 cos O- k 4 sin e = 0

(60)

replace the constraints (56) in tb_is case. Only the P.B. of _1 with _12 and of

X2 with _8' 09 and _11 are nonvanishing. The time derivatives of X1 and X2

are

o

Xl=Ul2 cosa=0

X2 =u 8 cos O-u 9 sin e- Ull(X 3 sin e+ k 4cos O)

(61)

The first of these equations requires u12 = 0. There are two ways of satisfying

the second equation. Noting that u 8 and u 9 are given, respectively, by - )'1 and

- )'2 from Eqs. (55) one obtains either

- k 1 cos O+ k2 sinO

Ull =)'3 sin O + )'4 cos O (62)

or

k 3 sin O+)`4cos O=k lcos O- k 2 sin 0= 0 (63)

Equation (63), taken together with the _2 constraint, would require )'3 = )'4 = 0

which corresponds to case 4 above. (The discussion of case 4 has been omitted

from this report. ) Thus, for case 2 the constraints (56) are replaced by con-

straints (60) which are regarded as determining Ull by Eq. (62) and u12 as

zero• The Dirac Hamiltonian may now be written

HD Px _ + Py rl - P,e ,. 5--_- m

-P_ k._-(5V _ c/3m c°s2 (_ cos 0_ - Pm fl c°s2 a- 1 (cont'd on next page)
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f 52V _2 V ", 1 52V

+ PXl ('.k3 .-----_+ )'4 ,_xSy- -/+ PX2 _-)`3 5xSy

h2V\
+ )`4 2.)

by

2

-Xl PX3-X2 P)`4 + c_ cos o2 (X3 sin 0 + )'4 cos O) P)`5
m

-k 1cos 8+)2 sin 0

+ )'3 sin O+ k 4 cos 0 PO (64)
(cont'd)

The form of this Itamiltonian differs from that of case 1 only in the P8 term.

It will be recalled that it was stated in Section IV that the Dirac IIamiltonian

is not unique and that terms whose first variation vanishes identically may be

added at will. One way in which differing Dirac tIamiltonians could be obtained

would be to start with the X's in It 1 replaced by the momenta conjugate to the

state variables, wl_ich is consistent with the first five primary constraints. Had

this been done, the resulting Dirac IIamiltonians (59) and (64) for cases 1 and 2

would have Px' Py' P_ and Pr7 instead of X1, )'2' )`3 and )`4' respectively. It is a

relatively easy matter to show that the difference between these tIamiltonians does

indeed have vanishing first order variation. Consider, for example, the difference

D 1 between the P)`I terms:

• --52V b2V "_ (65)
D1 = PX1 _()`3 - P_) 5x 2 + ()`4 - Pr/) _x_y J

for which the variation is

5D 1 =SPxli(X3-P_ ) S2---V ()`4 Prfl 52V
5x 2 + - 5xSy

__ 52V
+P)`I _ (Sk 3-5p_) 52V (6), 4 5Pr 7) 5xSy

hx 2 + (66)

/ 52V'_ (5 52V " '_% - _)_+_xx_) +(x_-p,) _y )f
+
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The constraints,_3 and _4 g_arantec that the firstbracket vanishes and the con-

straint 06 guarantees that the PXl term vanishes independent of the variations in

PXI' )'3'P_' x and y. The remaining terms in the difference of the two HD'S

are treated similarly. Thus, the IID obtained is essentially independent of whichever

of the two forms outlined above is selected for H 1.

The fact that any term of wanishing first variation can be added to IID

without changing its essential character may now be used to transform the

Itamiltonians (59) and (64) into the same form. This is achieved by eliminating

the variables O and PO" It is readily verified that one of the functions

P

gl = P_ sin 0 + p_ cos 0 _ .,'p_2 4- p_2 (67)
2

vanishes for case 2 as a consequence of the X2 constraint. Further, the varia-

tion in g is given by

/ P; "_ f

6gl=l\sinO=; [ 2 2.)6P_+\. c°sO_ • 2 2

2 ',/P_ + P_ _P_ + P_

+ (p_ cos 0-Pr/Sin0) 50

(68)

and again from the X2 constraint the coefficients of 6 p_, 6 Pr) and 6 0 vanish.

Finally, since any function f multiplied by g will also have vanishing first order
l 2 2

sin 0 + p_?.eos 0 may be replaced by 4, v/p_variation, it follows that p +P_

in the Dirac ttamiltonian (64). Since 0 and hence 0 are undetermined by the

Hamiltonian (59) for ease 1, the same substitution may also be made there.

The tIamiltonians now differ only in their P0 terms, and since the dependence

on 0 has been essentially replaced by p_ and Pr} these terms may be omitted

without loss of generality.

Anticipating the results of applicationof the Maximum Principle, itmay

be noted that for case 2, itwill be required thatp_ sin 0 + p_)cos 0 must be

positive. Using this condition, one obtains the Dirae Hamiltonian as
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2 2= 5__V_V ___V+ C fl cos2_ p_ + p_ttD Px _- +py _-p_ 5x -PrT_y m

p -- _2V \Pm B c°s2 _2V + Pt? 5xSy. ,)
- _- 1 + PX1 _ b x 2

b2 v 52V'_
+Pk2 P_ 5xby + P_ b y2 J - Px PX3 - Py PX4

(69)

c R cos 2 /p_
. , _ 2 2

+ 2 + P_ PX5
m

and, finally, at this stage the terms in P),i may be omitted in the same way as the

Pc" All of the essential information is carried by the state variables, their

momenta, and the control variable _ with the Hamiltonian

b V 5V

HD=Px _ +pyr/-p_ 5x Pr/3y

cfl cos 2 c_ ' 2 2 2 (70)
+

m v/p_ +P_ -Pro fl cos cJ- 1

which is canonical in all the variables. This is a very compact form for the

Hamiltonian. Ithas, however, one disadvantage. The momenta p_ and p_

enter irrationally. There may, therefore, be some advantage in retaining the

dependence on O, together with the two forms (59) and (64) for the Hamiltonians

corresponding to cases 1 and 2,respectively.

V. INCORPORATION OF TItE MAXIMUM PRINCIPLE
IN THE DIRAC FORMULATION

The Dirac Hamiltonian obtained for the time optimal problem described

in Section IV was written in a number of different forms. It was noted that the

terms in the momenta conjugate to the state variables were just the Pontryagin

Hamiltonian

27



f_V .c/_cos 2 _ sin O)
lip = Px _ + Py _ - P_ _-_ - m

/_ V cA_ cos 2 _ cos 8_)- Pm
- PN _\5 y m 1

so that corresponding to Eqs. (59) and (64)

;.2 V
/ 52V + k 4 _--_y/)

tI D= Hp- l+Pkl_k3 5x 2

2
B cos ot

(7i)

" 52V 52V2 / _- X1" + k PX3
+ Pk2'-k3bxby 4 by

- k2 PX4 (72)

Cfl cos 2 _ '" "
+ 2 _.X 3sin O+ X4cos O)Px5

m
+ Ull P8

with

Ull undetermined for case 1

- k 1 cos 8+ X2 sin8

Ull = )'3 sin 8 + k4 cos 8
for case 2

(73)

Now the Pontryagin principle requires that Itp be mmximized with respect

to the control variables. Since the only way in which Hp and H D differ in their

dependence on the control variables is in the PX5 term in H D, and since PX5

vanishes, maximization of Hp with respect to the control variables implies the

corresponding maximization of It D and conversely, The first condition for

maximization is that

7_Hp _ ._ H D
-0

5 Hp 5 H D
_ _ 0

58 58
28
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These conditions are guaranteed for IID which has been so constructed that the

Hamilton equations will yield vanishing time derivatives for Pc_and PS' the

momenta conjugate to _ and 8. Itwas these conditions which led to the secondary

constraints with five cases to be considered. Only the firsttwo cases, corres-

ponding to the conventional Pontryagin formulation of the problem, have been

analysed in detail.

In the conventional treatment, the bounds on n'_ arc not explicitly written

into the La_,Tangian. To obt_xin the conventional Pontryagin Itamiltonian, one
2

could just omit the cos c_ factors in Eq. (7 1) and apply later the condition that

the fuel flow, represented by fl has lower bound zero and upper bound, say,

flmax" Thus, the conventional Pontryagin ttamiltonian can be written as

_v _v c_2,'"
tlp=Px _ +py77-p_-p_yy + m _.P_ sin 0+p_cos 0_-pm B "(75)

with

0 _ fl_ Amax (76)

In this form HI) varies linearly with/_ and hence the nmximum of HI) with respect

to f_ will be on one of the bounds, and which bound is to be used will be determined

by the sig_ of the switching function

k =c sin 0 + PT? cos - Pm (77)m

according to the criterion that

fl=O k<0

fl = f_max k > 0

(78)

The maximization with respect to 0 requires that
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5e m \P_ cos 0-p_ sin eft = 0

°2It _ f" 0")
502 =- m k.P_ sin 8+p_ cos <0

(79)

The first of these conditions implies that

I 2 2

p_ sin O+p_cos 0 =+d'p_ +p_ (80)

and the second requires that the + sign bc used in Eq. (80) for fl _ 0.

It will be noted that the Dirac formulation with the bom_ds on rh included

in the Lagrangian requires (for cases 1 and 2) that the bounds of the fuel flow be

used and that Eq. (80) hold. The selection of the positive sign in Eq. (80) and

the operation of the switching function according to Eq. (78) are the essential addi-

tional information obtained from the Maximum Principle. It should be mentioned

that if the bounds on rfl were explicitly included in the Pontryagin formulation

(i. e., by writing the constraint on rfl as fl cos 2 a) the same five cases for investi-

gation would appear as for the Dirac theory.

The analysis of this time optimal transfer problem has shown that the

Dirac formulation can be used instead of the Pontryagin formulation and that

the Maximum Principle can be applied to the Dirac Itamiltonian. It is shown

in Section VI that these conclusions can be extended to a general class of optimiza-

tion problems.

VI. TIlE DIRAC FORMULATION FOR A CLASS OF
OPTIMIZATION PROBLEMS

The construction of the Dirac ttamiltonian for application to more general

optimization problems is not difficult to carry out. Suppose, for example, that

the optimization problem is to minimize the time integral of a function f0 (x,y)

where x represents the state variables xl, x2, ..., x N subject to the differential

constraints

3O



k. = f. (x,y) (81)1 1

and y represents the control variables YI' Y2' '""'YK" Itwillbe assumed that

any bounded control variables are replaced by an expression of the form

2 2
Ymin cos _ + Ymax sin a (82)

I

I

I
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!
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where Ymin and Ymax are the bounds on the control variable. A similar form

will be employc<t for any bounded state variable with the differential equations

suitably rewritten in terms of the parameter a. Thus, it may be assumed that

the state and control variables are all unbounded.

Introducing Lagrange multipliers, the Lagrangian for the optimization is

L=f (x,y)+) k.(ki_ -f" "'t(x'Y)} (83)
O 1 1

i=1

with coordinatesxl, x 2 .... 'xN' Yl' Y2"'''YK' kl' X2""XN" The momenta

conjugate to these coordinates are

Pxi = ki i= 1,2,3,...,N

P ki = 0 (84)

Pyk =0 k= 1,2,...,K

It is convenient to write the corresponding primary constraints in the form

I ¢i = Pxi - ki = 0
i

ai = Pki = 0

I 0._ = Pyk = 0

As before, the function H 1 is defined by

(85)
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'I

I

N

Itl='i Pi hi- L=_ ),. f.-f0
_, 1 1

i i=l

(86)

and the Dirae Itamiltonian

H D

is given by

N N K

=HI+) ui(oi +) vi_i+L Wka_ k
J

i=l i=l k=l

(87)

where the u's, v's and w's must be suitably determined from the requirement

that the time derivatives of all primary and secondary constraints must vanish.

To obtain the time derivatives of the primary constraints, use is made of their

P. B. 's among themselves and with I[ 1:

[®i'_k J = Iq, _k k' uaZ = 0

k%' _j ' = -L_)j ' Oi i= - 6ij

- q 5f. 5f o

L°i' _ 1 i
J

L$i ' Hlj =- fi

7 -i 5 f. b fo
L_k , H 1 =-) _'--J- +--

__ 5 Yk 5 Yk
J

from which one readily obtains

N N K

) uj L'q, _jJ + L vjL,ai, ,j i+ L wk L_ai' _k. '= - vi

j=l j=l k=l

N N

L "j>_,_jl +i_
j=z j=i

K

k=-i

(89)

(cont'd on next page)
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N N K

j=l j=l k=l

WkiW_' _k] =0 (89) (eont'd)

so that

__ _ fo
_i = - vi - '} a +_ jbx. }sx.

1 1
J

=0

_, =u. -f.=0
_i x x

?-f. bf 0

_Z .. --=0=-'_ X.--A + _y£- J _Yt
J

From the _ and _ equations one obtains the u's and v's:

(90)

i _f" _f0vi=- . kj_ + _.x---_
-' 1 1
J

(91)

The _ equations do not contain any of the undetermined multipliers u i, vi , w k

and hence are secondary constraints X £:

X_

- bf. bf 0

=-) xj --z +--= 0
_, }5y£ }5yt
J

(92)

whose P.B. 's are:

_ b2 f. b2f0
Lx_ oi] _ __z_

' -_ = J bxibY z 3x._y£
j 1

-_f.

F i= 1L×_'_x - _y--_

(93)

(eont'd on next page)
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so that

_ _ _2f. 52f0

=- _xj--a ÷
L.X£, ¢Ck _ 5 yk._'-y£ 5ytSy k

J

LX£, It I [ = o
J

N N _2f. 52f0
/f" %N

_(t =\ u._.-i' kj-_xiSy +Sx._yt /
i=l j=l

N 5 f. K _ N 52f. 52 f0

- )% vi---JL+i WkL-?_ k., ] + j
i=l '_Y£ k=l j=l 5 YkSYt _Y_SYk

(93)

(94)

These equations may or may not lead to further secondary constraints depending
52f.

Y_t .. At any rate, completion of the calculation of the w k and deter-on the5 ,,_Yt

mination of the existence of first class constraints is a routine matter for any

particular problem. The Dirac Hamiltonian becomes, on using the expressions

for the u's, v's, O's, $'s and o0's

N N N

ItD=_ k jfj-f0 +);_ uj(pj+}, vj{bj+_)__w k o_k

j=l j=l j=l k

N N

=?,_ kjf.j -f0 +}_ fj (Pxj-kj)

j=i j=i

N N

5 fi "_ 5f0
-; i(,i_ kiS-_../- _-_'.iPkj+! WkPyk

j=l i=l J J k

N N N
3f.

=] f" -fo-_ _lPkj ----L +/_, Pxj i 5 x.

j=l i,j=l J j=l

= Hp + terms linear in PXj and Pyk

34

5 fo C
+ _ WkPXj _. Pyk

1 k

(95)

(cont'd)



where some of the wk may vanish and others may be indeterminate, indicating the

prescncc of first class constraints. The function Hp is
N

tip = - f0 + _ Pxj f'J (96)

j=l

which is consistent with the Pontryagin formulation.

This Dirac ttamiltonian may be used in place of the Pontryagin IIamiltonian

inthe Maximum Principle, since any contribution of the terms in p),j and Pyk in

the application of this principle will contain PXj or Pyk as vanishing coefficients.

VII. IIAMILTONIAN TECIINIQUES FOI_ TIIE SOLUTION
OF OPTIMIZATION PROBLEMS

In the preceding sections a Hamiltonian formulation for optimization prob-

lems has been developed. It has been applied to a particular optimization problem

and it has been seen that the Maximum Principle can be incorporated in the formu-

lation. Furthcr, it has been shown that this formulation can be generalized for

other optimization problems. In this section a perturbation theory for the solution

of optimization problems is outlined. First, however, one comment should be

made on a defect of the method.

This defect is that the constraints on the initial and final values of the

state variables have not been explicitly incorporated in the formulation. Just

how this might be done is far from clear. It may, however, be noted that in-

corporation of the bounds on fuel flow leads to secondary constraints which imply

that the fuel flow operates on its bounds for cases 1 and 2 without _ccourse to the

Maximum Principle. Explicit inclusion of constraints on the initial and final

values of the state variables might lead to additional secondary constraints on

the control variables which would automatically fit the final solution of the

Itamilton equations to initial and final values. It will be recalled that, in

addition to cases 1 and 2, which have been discussed in some detail, cases 3, 4,

and 5 may occur. These cases probably correspond, in some sense, to singular

solutions of the problem which are significant only for particular sets of initial
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and final values. Their treatment and interpretation would be greatly clarified

if tile initial and final values were made an integral part of the formulation.

It should be mentioned that the theory developed in this report assumes

that a complete set of initial and final values has been imposed on the state

variables. No difficulty is anticipated in relaxation of this limitation, h_corpora-

tion of transversality conditions into the Dirac formulation appears to be straight-

forward. This would, of course, have to be done for application of the theory to

orbit transfer problems.

The theory as developed in the preceding sections is in a form particularly

suitable for the IIamilton-Jacobi approach. The Itamilton-Jacobi equation de-

rived from the ttamiltonian H D in the forms (59) and (64) would be a linear first

order partial differential equation. Neither of these equations separates. One

could, however, undertake a perturbation procc<iure and write

tt D = tID0 + HD1 (97)

with HD0 selected to represent a solv_d)le problem. The selection of IID0 would

depend on the particular problem to be solved. In general, one undertakes to

split It D so that not only is the HD0 problem solvable, but also that tID1 is, in

some sense, small compared with ttD0. It would also be desirable to choose

ttD0 in such a way that its ttamilton-Jacobi equation is separable. It is not

easy to satisfy all of these conditions on ttD0 , as will be seen from the examples

discussed below. Considerable further analysis is necessary before a satis-

factory perturbation theory for optimization problems can be worked out in de-

tail. Two ways in which the theory might be applied are:

Low Thrust l_roblems

For such problems it is assumed that the maximum thrust is small com-

pared with the gravitational forces acting on the vehicle. In addition, some of

the gravitational forces might be small in comparison with others. Thus,

HD1 might be chosen to include all terms involving/3 (since if the thrust is

small, fl is small) as well as those terms involving the small gravitational
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forces. Then IID0 would represent the optimal trajectory for a vehicle moving

under a a ravitational force derivable from a potential V0. If the potential V 0

is just the two body potential then }ID0 represents the classical Kepler problem

in a rather unconventional form. For the problem discussed in Section IV, for

instance, there would be many more variables th.'m are normally associated

with the two body problem because of the presence of the p's. Further, the

Hamilton-Jacobi equation associated with HD0 does not separate for this case.

Since, however, the solution of the two body problem is well known, it should

be possible to somehow construct a solution of the Hamilton-Jacobi equation

which could be used as a basis for a perturbation theory for the low thrust

problem. *

Itch Thrust Problems

In this case one could select HDI to include all terms involving V since

the gravitational forces would be assumed small compared to the thrust. The

Hamiltonian lID0 would then represent the optimal trajectory for a vehicle with

no forces other than thrust. The associated Ilamilton-Jacobi equation does not

separate for this case either. As in the low thrust problems, however, the

solution for the HD0 can be obtained in closed form and is available for use in

the same way as the Kepler problem for the low thrust case.

It thus appears that the development of a Hamiltonian perturbation theory

for optimization problems is feasible. Further work in this area is planned, and

results will be submitted as they are obtained.
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FOREWORD

This report was prepared in the Applied Mathematics Subdivision and

describes research supported jointly by contract NAS 8-2605 and Republic

Aviation Corporation's independent research programs in Applied Mathematics,

under RESD R3201-230, Celestial Mechanics. •

A]_STRACT

This report contains the development of a first order solution for the

polar oblateness problem _ith the potential limited to the second spherical

harmonic. The development begins with the equations of motion of the two-

body problem. Expressions for a set of par_neters are derived. The per-

turbation equations of these parameters for m_ arbitr_-u'y disturbing force are

generated, applied to the oblateness force and integrated analytically to obtain

the first order solution, This solution is valid for all orbits except those

which are nearly rectilinear. -,I-]"
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I - INTRODUCTION

The purpose of this report is to present the development of an improved,

approximate, closed form solution to the equations of motion of a vehicle about

a spheroidal earth. The nonsphericity of the earth is assumed to be character-

ized by the second spherical harmonic. A feature common to some solutions

which have been offered is a limitation on the applicability of the solutions in

the neighborhood of an inclination of 63 °, clue to a singularity at this inclination 1' 2

The original motive for the investigation, the results of which are presented

here, was to examine the possibility of overcoming that restriction. Since the

use of the argument of perigee is the immediate occasion for the presence of

the critical angle of inclination, m_ obvious corrective measure is the choice

of a set of parameters which does not incorporate that element, tIowever,

numerous other pitfalls must be avoidc<l. Some of these are: a) indetermination

of the initial value of the time of perigee passage for nearly circular orbits 3,

b) degeneracy of the solution caused by the presence of the eccentricity in the

denominator of the perturbation equations for nearly circular orbits 3, and e)

the introduction of secular terms in elements which are clearly bounded as a

result of the integration of the perturbation equations. The particular set of

two-body parameters selected for the present development has been chosen

so as to minimize the difficulties listed above. Neither time of perigee

passage nor argument of perigee is included in the set of elements, none of the

perturbation eCNations contain the eccentricity in the denominator and the in-

tegq'ation process is modified so that secular terms do not occur explicitly in

the equations for bounded elements. However, it should be noted that the solu-

tion is not applicable to nearly rectilinear motion.
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The development is self-cont_ned. First, expressions for the two body

parameters are derived from the equations of motion, then perturbation equations

for these parameters are obtained for an arbitrary disturbing force, and are then

particularized to the oblateness problem. Next, these equations are integTatcd to

obta.in first order corrections. Finally, some remarks arc inclu(led concerning

the properties of the par:unetcrs, some I'.,'ncral results of the second order theory,

and some possible applications.

In this report, the eonwmtion is adopted that capital Latin letters repre-

sent vectors (or matrices), and small Latin letters with appropriate subscripts

indicate the components of these vectors.

II - DERIVATION OF A SET OF TWO-BODY PARAM ETERS

The equations of motion for a vehicle of negligible mass about a spherical

earth are:

o.

R +_3R=O (1)
r

where/a is the product of the gravitational constant and the mass of the earth,

R is the position vector and r is the magnitude of l{. A reetangmlar, inertial

coordinate system is used with the equatorial plane t_en as the x-y phme.

The general solution to these second order, differential equations generates

the vectors R and R as vector functions of six constants of integration mad time.

The six constants are determined by a complete set of initial conditions: vectors

R0, R 0 and t 0.

From the many eonstmlts that can be derived, an independent set must be

selected. For application to the oblateness problem, the following set has been

chosen: U, V, g, e cos 8, e sin 8 and t o . U and V are unit orthogonal vectors

which specify the plane of the motion. The parameter, g, is the magnitude of

the angular momentum vector, e is the eccentricity, and O is the angle measured

from U to the perigee vector. The parameters g .and e determine the shape and

size of the osculating ellipse and (9 gives the orientation of this ellipse in the

plane. Expressions for these parameters will now be derived and their in-

dependence demonstrated.

2



Three of the constants are obtained immediately by crossing Eq. (1)on

the le[tby R and integrating the result.

w

R x R = 0 (2)

RxR=G=R 0xR 0 (3.)

The magl_itude of this constant vector just defined is one parameter, g.

The other two parameters are contained in the unit vector G/g which may

be cx)ressed as the cross product of two orthogonal unit vectors in the plane

perpendicular to G. Thus

G
--= U x V (4)
g

U is arbitrarily chosen to be in the direction of R0; this direction is not

a constant of integration and therefore not a parameter• Thus R and R can be

expressed as follows:

R = (R • U) U+ (R •V) V (5)

R=(R •U) U+(R "V) V (6)

Let cp denote the m_glebetweenRand U• ThenR• U = r cos_and R • V

= r sino.

To obtain an expression in _ for R • U and R • V, one proceeds as follows:

R" U=-u(-R'- 3 U)= -_--_R'3 (vxG-g)_
r r

g 3 r
r

Integration yields
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• -_V" R + Cl (7)l_.u= g r

Using the initialconditions to evaluate the constant, one obtains, recalling that

inil_allyU is in the direction of R0,

R 0 " R 0 R 0 R 0
+/_ sincz 0 =c 1-

r 0 g r 0

since O0 = 0. Eq. (7) now becomes

R" U =- _ R" V _ R0" R0

g. r _ r 0

In the same way, starting from

i{ --" - R___) R;• V =- U-;R ---
g _ 3 r J

r

(8)
r

one gets

I

I
I

I
I

R- V-i_ (R" U)= c2
g r

Using

R" ( g gr

and the initial conditions, the constant c 2 ma)/ be evaluatccl

r 0 g g _,r 0

Thus, finally, Eq. (9) becomes

R" V =_' R. U + -1 i
g. r -._r 0

(9)

(10)

I

I
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It is still necessary to express r in terms of @ in the new parameters. This

will also allow one to express R as a function of these parameters alone.

First, one multiplies Eq. (8) by sin O and Eq. (10) by cos O and subtracts to

obtain

But

R" (Usino- Vcoso)=- _'R" (Ucoso "V sino)
g_r

- R 0 " R 0 . 2 1"_ :"
g sin o - _k - ./ cos oj_
t_ r 0 _r 0

and

ttence

and

R (U sin @ V cos O) R" / R G", g• - = _, rXg- )=- r

R
-- " (U coso + V sino) = 1
r

{ "g /g 1 i g R0.R0 _g2 \.... sin_- - 1; cos¢j
r g k a r 0 - t_r 0

r _

2
g

_ -0" Ro
]l+ cos o {\_-- -i_- g =- sin i

#_ _tr 0 t_ J
£0

One now defines the parameters e sin @ ,_md e cos 8 by the relations

and

2
o"

-_-- l=ecos @
_r 0

g R0" R 0 '= e sin 0

5

(]1)
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where it is evident that c is the eccentricity and O is the angle measured from

U to perigee. Eq. (11) thus becomes

2 2
g - g 111'_

r
(1 f)+ e cos

_1 + c cos (o - e)j

where f is the true anomaly.

One can now rewrite Eqs. (8) and (10) as follows:

R" U =-u(sinO+ e sin 0) (8')
g

R" V= _(cos_+ e cos0)
g

(I0 ').

A further expression is required torelate _ m_d t. In the process of deriv-

ing this relation, a sixth constant of integration will ,_'ise. To do this one pro-

ceeds by multiplying Eq. (8) by cos 0 and Eq. (10) by sin O and adding:

r R c _ R 0 " R 0g
R" (Ucos_+ V sin o) =- /2 _- . (Vcos_-Usin(p)-Lp r-_g_r

k]

+ - L_sinO I;
\/_r 0

COS C9

The left hand side is R • R and the first term on the right is zero. }tence,
r

R0 % - 2 .,
= eoso+_ g-- - lflsin0 i=_te sin f = b

r g U _t r0 -p r0 _ g
(12)

From Eq. (ii)

2 -sino_ _r 0- -g
i" g . U r0 cos _ .
=- _b'=_ r21"R'R_g'_r i_

- 1") f_o" _o -_. gi l+cos_J_- - _g
& \_r 0 _ ro sin q)_I

!

!
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IIence

R. R 1 2 _R. R" I
= - r_, r la

r g .

_=-g-
2

r

(13)

This equation may be written as

r_ =g
r

m_d using Eq. (11'), one obtains

or

2

g _ (i e cos[1 + e cos f]5 = * f)

2 - 2 2 2 2 2 -
_ --=IX--i 1-e +ecosf+e cos f+e sin f_

1 + e cos f 3 t_
g

(14)

Considering only the factor on the right, the following statements cm_ bc made.

(i)

2 11

(1-e 2) is a const,_mt and can be shown to be equal to'A_
3 2

g /i - e

where n is the mean motion

(2)

(3)

2

--l_---e cos f (l+ecos f)=_e cosf r_._ =1
g g2 g r rg g

lu 2 2 2 1
-_e sin f=- ge sinf i"
g 2 g g

Combining the last two expressions above, one gets

r d i=u d (resinf)2 _- (e sin f) + e sin f i'] 2 dT
g g
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Thus Eq. (14) now becomes

11

_b _ , +_p_d
-1-+ e cos f 2 2 _- (r e sin f)

_/1 -e g

Integrating with respect to t, the left hamd side becomes after some algebraic

reduction,

i _odt _ 2

j 1- c cos f ./1- e2

' 2
'1 - e sin qo

(t_m-1-- (1 * cos_) (1+ e cos f) +e sin f sin

and the final equation* is

I - e2 sin ¢_
tmn-I

f_

n (t-t0) = 2 )\ (1+ cos@) (14 e cos f) + e sin fsin¢_

--P- /1-e 2 ( r e sin f+ r e sin {_)
2', o

g

This is also the defining equation for to, the sixth const,'mt of integration.

In Eqs. (5), (6) and (15) the constants U, V, g, e sin 0, e cos 0 and t o

occur. To summarize, these constants arc defined by the following equations:

(15)*

R _G R_
U =- cos@- sin@ --x--

r .g r i

_ __Gx
V = Rrsin @ + cos _ ,_g

(_6)

(17)

g=lGt

e cos 0= K(R" V)- cos@
U

(18)

(19)

* T}_is c(Nation holds only for e < 1. Only slight modifications are required

required for e > 1.
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e sin 8= g(sin_)- R" U (20)

2

/,,'i- e sino )
2 tan-i \.(__(cos-c0)(i c cos f)+ e sin f sin Oto =t- n ,

/ c2
-_2 ';1 - (r e sin f+ r 0 e sin 0)
ng

(21)

It should be noted that U and V a('eount for only two independent parameters

since they _u'e orthogonal unit vectors and the direction of U was chosen arbitrarily.

It remains to be shown that the parameters just defined are independent of each

other. This will bc proved by showing the equivalence between the set above m_d

the set R 0, R 0 whose elements are imown to be independent of each other.

Further discu_,sion of these parameters appears in Section VI.

From the derivation that has preceded, one easily obtains R 0 and R 0 in terms

of the parameters on tim one hm_d, namely,

2
(r

__ t9

ro (1+ e cos O)P

2
(f

R0 (1+ e cos 0)>

R 0 =Q_-e sin @)U+ (l+e cos O) V

and on the other hand, the following parameters in terms of R 0 and RO:

R 0
U =_

r 0

!

g=4(R0xR 0). (R0xR 0)

G R0

V = g x r0 (G = R 0
x R 0)

9

I
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2
g

e cos @-
Pr o

1

e sin @ = - g RO " RO

r0

to = to

III- PI.;RTUPd',ATION EQUATIONS

Before proceeding to the dew.'lopmenL of the perturbation equations, it

should be observed til'at, of the qu:mttties tisted at the end of the preceding

section, only six have been obtained as constructs of integration. These are

to, e sin 0, e cos 0, g, and two contained m U ,and V which determine the

plane of U and V. The third constant contained in b and V which specifies the

direction of U in the plane is arbitrary. This last arbitrary constant does not

vary under the action of the disturbing force. As a result, U is not subject to

rotation about the angmlar momentum vector.* Since ¢0 is measured from U, this

restriction implies that& does not include the time rate of change of U in the

osculating plane. As a consequence, the time rate of change of _0 must have the

same functional form that it has in a purely Keplerian motion, i.e., & = g/r 2.

Keeping in mind the result just noted, the method for obtaining the perturbation

equations for the set of par_-uneters is as follows:

t Each of the Eqs. (16-21) is differentiated with respect to time
(considering the parameters too as functions of time)

Wherever R occurs, it is replaced by

__R+ F
3

r

where F is the disturbing force

The resulting equations are simplified by making use of the
relations obtained in the preceding section.

* Compare Ref. (4).

i0
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. Equation for _

Noting that

2
g =G'G G=RxR

one obtains

" f R "x
G=axa=ax_-.--_ FJ= RxF

r

_d hence

-- X@" F

2. Equation for U

Differcntiating Fq. (16) with respect to timc

= \- sine--- coso-x-r g r

R" R
2

r

U

-_ cos e i--_-sinor x r)- sinokk_ X--r _,

Then, using

R =A; - (sino ÷ c sin 0) U+ (coso + e cos 0) V,

and

G x R - '-_-L(sinog r gr

it follows that

-I

* e sin O) V+ (cos(p+ e cos O) Ui

11

(23)
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cos O r - r-} =-'_-_ [e sin f U + (1 + e cos f) V t
grJ

But

R R
e sin f- (Eq. (12))

gr 2
r

and

or

-P-- (1 T c cos f) = .24_ (Eq. (11'))
gr 2

r

-_- f) = 5gr ( 1 + e cos

The coefficient of _ in the U equation above is then simply - V. Replacing these

terms in the U equation

R'R R" R
U = - Vq3 2 U+ --_--

r r

;- d fG", R
u + v6 - sin,a L_._jx 7

but

d-7\-g/= - -_x-g \" • _gj,

and hence

OF

"- "<G R)xR Q G'_= i \Tx-- F'--U sin ¢), g r g J

6 = - sin_ _\-_. r (25)

1 _:_,tion for V

In an entirely analogous fashion one obtains V,

12
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v = coso _ ,.-d (26)

4. Equation for (e cos O)

w • •

(e e6s (9)=KR. V+sino&+_R • V+ K R. V

From Eq. (26) it follows that

R-V=0

and, rearranging terms,

" _ft v" -g-sino+_sino}+gF • V+(e e6s (9) =,\- 2 - _ u
r

Tile first term on the right is identically zero, so that, finally

•

(e e6s (9)=_F • V+d_R " v

_E_quation foc (e sin (9)

(27)

In :malogous fashion

do •

(e sin (9) =-' gR" U+KF " U i

6. Equation for t0

(28)

In order to simplify the derivation of t O, Kepler timt: derivatives will be

assumed to have been canceled. In addition, in order to simplify the writing,

c cos f = p

e sin f=q

e cos 0 = Po

- e sin 0 = qo

(29)

St,q_rtingfrom Eq. (15)

13
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n (t-t 0) = 2 tan __

'1 2-e sin _ - q q
' 2 _ o "

, 2 i_/1_e _

cos _- (1-_p) + q sill ¢2 A * _-l+p l+Po./2

one obtains, on differentiating with respect to time,

2°

fi ..(t-t 0 )-n t0 =-

1 -t

(_ .- sin_(/1-e 2 .,
,) ,

(1-e") sil_20 dt\" _22 cos (l+p)+q sin _2 j

'2
cos2_ (1,p) _q sin

_. 2_j

f q (-:'O

\ 1-ip 1_ Po

d , "_"s f 2 d /" (._.eL._1 q o "_

)(_- [1-c"J-,Jl-e d-_k.l+p l+Po._

(;_0)

a. The first term on the rigi_t of i.;q. (30) becomes

- !

d 1 -c 2_in _ (cos_ (l_-p)+ q sin_)(TL- :. )- 'l-e2
2-

i cos 2_(l+p)*q sinO 2 1_e2)2-, • ( sin 2_2. 2

sin _2(la cos_2 + _ sin _)_2

2
The denominator, by m_<ing use of the identity p2 -_q2 = c , is

(l+p)(ltP o)

b. The last term in Eq. (30) is

_o(l+Po )-poqo
/ e 2 Qq (1: p)-(li)

' ( 1 +, p)2 (1 + po )2

c. The right hand side of Eq. (30) thus becomes

r_ (3

2 sill _- (p COS _-_I Sill?) _Cj_) (I0 (I + po ) - i)0 qo '

-'/1-e2_ ( 1 + p) (1 + po ) + -
(1 + p)2 (1 + po )2

d, /l_e 2

+(l+p) (l+Po)t 2 sin2 _.(l+p)cos_+ qsin_j-q(l+Po )+qo(l+p)'7

14



I d, d _1 - e 2 = - ")_1_!'_
(It _

'1 -c _

The coefficient of this derivative becomes, after some algebraic mmlipulations,

(1 - e 2) sin(0 and one gets for the wiiole c(tu.tion ,

fi (t-to)-nto =-/1-e 2
(1 , p) (1 + po )

(1 + p)2

Using the fact that

l:jo (1 = po ) - 1_° qo

(1 _ po )2

I
I

I

I

Po : p coa o + q sin 0

q =-p sino + q cos
0

I_O=l_ coso +(] sino

Qo - p sin(?+_ coso

Qo (l+Po)-poqo (I_ sino - q coso) (l+Po) + _ coso- _t sin©) q o

(i + po )2 (1 + po )2

I

I

I

and rearranging, one gcl.s

-,/'1-c2

to ' J" _(p sin O+ sino) (l+p) (l+Po)fl (t-to) - n = - _p
(l.p) 2 (l*po2) '-

- q(l+Po )2 + (sin (o (l+ Po) + qoCOSO)(l+p)2

1 + po )2
i • +

+_(qsm 0 1-cos(p) (l+p) (l+Po)+ (l+p) (

+ (qo sin¢o - c°s(o (i + po)) (l+ p)2 j } (31)

15
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f. Noting that

2

p=g-- - 1 q=_ R" R
_r _ r

_=2--g(l+p) _=_--q. l(!--'-J2) R- Fg
(32)

it is now possible to express Eq. (31) in a more convenient form. First, the

right-hand (R. H.) side of Eq. (31) is rearrm_ged as follows:

R. tl. =

I 2
- 1-o - -

- po )2
(1-_P) 2 (l+po2)' _(l+p)g _.F2sino(l+p) 2 (l÷p o) - q (1+

(1._ p)2 (l+Po) ?+2i. sino,. (l+Po) +qo coso) _ q (qsin@+l-coso

+\qqo sino-q cos© (1_ po)J(l*p)

- po)2+ (l+p)2 RgF (qsino + i- coso) (l+Po) _ (i+

+ (qo sino- coso (l+Po) )(l-p) j?

1) The coefficient of _ is rewritten as follows:

f
/

2 sin 0 (I+P) 2 (l+Po)+2(sino (I+P o) + qo cos o)(l+p)2#,,qq ° sin O

- qcoso (l+Po))(l+p)

2
- (1 + po ) (q + qPo - q sin q_ - q + q cos _)

Replacing Po by p cos o + q sin O, one era1 factor out (1 + p) from the whole

expression and rearranging again,

16
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But

(l+p)-k2(l+po) sino (2+p) + (l+po) (2psin O- 2qcosgo) + 2(l+p) qo

+ q qo sinoj*

cos 0

m_d

-p sino + qc°so = qo

q sine0 + P coso =Po

thus by Eq. (34)

(33)

(34)

(l±p)"(2 (l+Po) sin© (2+p).-2(l+Po) (to,2 (l+p)(to cos© , q qo sino[

7

= (l+p)_.!2 _sino (l+Po) (2+p) - qo (1 - coso) I" - (i (q) sin O

2) The coefficient ofl{. F is rewritten as follows:

2 (l+Po) (qsino+ 1-coso)_- (1, po ) _l+po- qsin_0- 1+ eoso- cos o-peoso_

+ (l+p) qoSin°

By using Eq. (34) this expression reduces t,,

2 (l+Po) (qsino * l-cost0) _,qo sino (l+p)

Putting the last two results together, one gets

R. tI. -

2
_/±_ - e - ,-I

' _ L2 [sin o(l+Po ) (2*p) - qo (1- eoso)} - q qo sin Cj
(l+po)2 g

• }-

+ R F I 2 (l+Po) (qsin O*l-cos¢0) + (I+P) qo sino j
I _a

o"
t-)- h (t-t 0) - n ({: 0 )

17
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Noting that

¢

n = ,-_-
'_ 3

a

3 h
_=-_n a

1 2 R" R

a r

2
2a

h- R" F

thus

_d

fl= - 3 n---_aR • F

h it-t0) -n ([0) =- n
3a " "'

• i
R F (t-t0). t o

If both sides of Eq. (31) are then divided by n, the coefficient of R. lI. becomes

: 2
'l-e

gn (1 + po)2

but

" 2
.,/l-e 1

g _/'_.a

and the coefficient becomes

1

(l*Po)2

a/_3 _ 1
"i 2

_t a (1 +po )2

a

i1.

Thus, Eq. (31) becomes finally

to + 3_.aaR" F (t-t0)- a
t_(l+Po )

2_'_ 2[sino(l+Po) (2+p)-qo (l-cos(0)] - qqo sinot]

+ (R" F) ._-2(l+Po) (q sin(_ + i - eos¢)+(l+p)qo sino' (35)

18
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IV - APPLICATION OF TtIE PI]I<'I'UI{BATION EQUATIONS
TO TtIE POLAR OBLATENESS PROBLEM

For this problem, F = VO where

u k 2 fl 2 .\

r r

m_d where k 2 is the coefficient of the seeonci spherical harmonic due to the

oblateness of the earth. Then

(36)

F _

,)

3 _k 2 " / z" "\

5 "k.1 - 5--9£./R+ 2 z K _J
r r

(37)

By Euler's theorem

,)

-3 N 1¢2 _.- 3z" ""
R" F=-3_ - i--- j

3 \ 2
r r

(:_s)

Since all ttae expressions on the right side of the perturbation equations are ex-

pressed more simply in terms of o than in terms of t, derivativeb with respect

to t will be replaced by derivatives with respect to_o. For this pro-pose relation

(14) is used, i.e. ,

fr

_=-=-
2

r

from which one obtains

d _ dt d _ /'r 2"', d

4o do d; ' (?,9)"-. gJdt

The right-hm_d sides are expanded in terms of trigonometric polsmomials in

multiples of 0 with functions of the parameters as coefficients.

For purposes of imckration the perturbation equations are all written as

the sum of two parts, the first of which, indicated by a subscript H will be inteKrat-

ed "exactly" while the second part, indicated by a subscript S, contains short period

terms only.
19
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where

2)

where

_Indc ix2rtm'bation equations are as follow:

' ' + (e cos @)S'1) (e cosO) =(e cos O)it

,)

3 u'k 2 - 3 (u32+ v32 ) _ 1t __ I __

(c cos _)H 4 ' 2
g

,

'_'2 _ 1 2
(e cos O) S' = 4 _.--t-(u3

g

(1 + 2 e cos f) sino (-t0:l)

- v3" ) (7 sin 3 (_ + sin O) ' ,_- u3v o,)(7 (:os 30+ cos ¢0)

1 (u32 2)+ e cos 0 -_ -v 3 (3sin4(.3 + 5 sin 20) . u3v 3 (3 cos 40, 5 cos 20) ;

-3 (u32 ') i+ esinO_2- , -v3" ) (cos,l©-cos2(_) _ 3u3v 3(sin 4o-sin 20)

+ (e sin O) (e cos O)
- 1
.-_- (cos 3

5 f) 7 o
-cos 0)_ (_ cos., 0-' _;cos 30-_-coso)u 3"

(4Oh)

2 5 3 1 5 :; 5 . "
+ v 3 (-_cos 50-_g cos 30_ _-'cos O) +u3v 3 (:1 .sin 5 0 ' _ sit: 30-_-smo),

1 _ 23 18sino) u32+ (e cos 9)2 !4(sin 3 ©* sin O)-T_(5 sin 5 ,,, sin3o,

1 2
+T6 (5 sin 5 o+ llsin 3 O+ 6 sin o) v 3

u3v 3
+ .--S---(5 cos 5 O* 17 cos 3 O+ i0 cos O)

2

- 1 u3

+ (e sin 0) 2 i -_ (sin 3 c_ - 3 sin _) + -_--(5 sin 5 cz -

2

v 3 u3v 3
+-_-(-5sin5¢o +17 sin 3 0- 26 sin O) * 'g'

5 sin 3 _- i0 sin c_)

-- (- 5cos 50+ 11 cos 3 ¢_

- 6 cos¢)

/

(e sin 0)' = (e sin @)II + (e sin O)S'

20
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T_Next,

O

, = _-- (u3 2(csine)t t 4 _- , +v3" )-1 (1+2 e cos f) eoso (41a)
g

3a2k9 _-1 2 2 (7 cos3 coso) 1
(esinO)s 4 _(u 3 -v 3 ) O- -_-u3v 3 (7_inSo-sino)

g

-_ ecos@_,._23 (u32_v32)(cos40+cos20)_3u3v,_. (sin 40_ sin 2 0)

1 (u.12 '2+esint_ -,j . -v 3 )(3sin40-5sin20),u3v3(3cos-lo-5cos20)

2

- 1 u3
+ (e sin _) (c cos @)a,_-(sin 3 o * sin o) +_(-5 sin 5(2- 3 sin 5 O* 2 sin 0)

2 (41b)

v 3 u3v 3

+_(5sin5o-Osin 30- Ltsino) + _(5c°sS(2-Sc°sa0-10c°so)j5

2
u 3

+(o oo_0_e_-_-(cos:_o +3_'osO)-T_-(_ cos _o_ _: oos a _- 2c oos o)

2
va %%

+-_- (5 cos 5 O+ 5 cos 3q0- i0 cos _)---_ (5sin 5 c, il sin 30+6sin O) !

2

:- 1 u3

+(_ _in 0)z ,j _ (cos a o - cos _) +-i_-_(s co_ _ ,: - _1oos a o _ _ oos o)
2

v 3 u:;v 3 -.,

*-_ (- 5 cos 5 O* 23 cos 3 O- 18 cos 0), _ (5 sin 5 ,,_- 17 sin 3 O* 10 sin o

the perturbation equations for the components of U m_d V are given.

I I /

3) (Ul) = (Ul)ti * (Ul)S

(Ul)ii' _

.)

6 a'k,) g3 _" g3 g3

•, -sin _ *Ul-_-)coso+ +v 1 sino)• 0 g v(-v2 (u2 --_)
g

(42a)

21
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4)

5)

G)

(Ul)s '
6 u 2 k 9 _ " / g3 " /
4 "(ooo_f) o _i,_o\, v2+uloT}oos_+k_2

(G1b)

t 1

(u2)' = (u2) H + (u2) s

6 ,_2k 2
l__

(u2)tt 4
(I"

_"_ "/ g3 " /
O

sin q3,-g--.ii. Vl + u 2 gjcos q0_ <- u

g3"_ . "

i * v2 -_-fl sm ¢0_" (43a)

6 ;/21q2 g3 " _

(U2)s' = --4 (e cos f) ,-7-sin o "<hv 1
g

g?, \ I g3"\
_,,_7 _ooso, \-ul +v27j sin 07 (43b)

(u3)' = (u3)ii' + (u3) S'

6 u _<2"g3>_ 2
(U3)H'- _- \--_-j sino (u 3 cos©* v 3

g

sin O) (44a)

6 _2k 2 -___)2(ua)s' - 4
g

(e cos f) sin (J (u 3 cos ¢0 + v sin O) (44b)3

(Vl)' , ,= (Vl)ll * (Vl) s

z
6 tz I%

( I)H 'V "_"
4

g

g3 "/ g3 "_ /

---cos O--g-- ,,\- v2+u I g .,)cosO+_.,u 2

g3",

+ Vl-_-jsin©j_ (45a)

6 I.L2k,2

( 1)S 'V
4

g
ga :<(e cos f) -g-- COS O "v -v 2

g3"

÷ . O <.u2 + vI_-jsin q_ (45b)

22
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7)

S)

9)

_0)

I ! /

(v2) = (v2)t, " + (v2) s

6 ,_. '<'2
I __

(V2)H .i

, ,_ r_°_

coso _ ,..v l'u2-g-/c°sO+_-u I
(46a)

,3 -1% g. " < _;3 "' "

(v2)s': 4 ecosf _g coso', Vl+U,z--g/coso_k-ul +v_)si,, , (46b)

' 3) ' (:_)s'(v3) =(v, Ii _ v

,)

! _ -- 4" '\(v3)}i .g./ coso(u 3coso + v3 sino)
g

,)

6 u-k.) <g3"\2

(Va)s 4 (ecosf), ,_; coso(u 3coso+ v3
g

(,i7 a)

sin O) (47b)

I I I

g g =gH ÷gS

s 9

gH : - 6 bL'k2 (v 3 cos c_ - u 3 sin O) (u 3 cos O + v 3 sin o) (48a)

, p2k2 - u 3 sin o) cos O + v 3 sin O) (48b)_S_ = - 6 e cos f (v 3 cos O (u 3

t o

[0T3__Ca $(t_t0 ) +3aq5: 3ak2ft [,-3 '_
_ 6)293_" _(u32 + v32 )-1 (]-e")

a _ (l+e cos "

- I 3 7 3 3"

+coso'u3v 3\-2csinS+_-csineecosO*_csin8 (e cos S)2 +_ (e sh_ 8) /,

2 2,('1 + 5 7 i 9
- (u 3 - v3 ;,_ _- e cos O+_- (e cos 0) 2 +_ (e cos 0)3 +-g (e sin 0)2;

(49)

(eont'd on next page)
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1 0)32 -c cos O, :2 (_' c¢,s 8) 2 -K(e cos

I
- _ (c sin O)2 - e cos @ (e sin 0)2_

?, 5 2 2
+cos20 u3v3( _ csi;-,O 2 ecosbcsillO), (u 3 -v, 3 ) (-._- 7-e cos 0 -_e cos 6) 2

,{ ( c sin 0)"/-
2 2 "
_(u 3 + v._-)-.) I /'c cos O + (e cos 8) 2

• ,) • .
l

' 7 (c sin 6)",

- '" 39 ' 11 3 \
+ cos 30Lu3v3k 72 e sinO-, _ e Mn 0 e cos G t le sin _ 6' cos 0) 2 ---(e_ sin O) .j

2 2,. "7 Z1 1 17 5
+(U 3 -v 3 )\_T--_--eCOSO _-(ceosO)2+ (esinO) 2 (ccosO) 3_ -g-- -_

\ f3 2 2 " ,' 'sinO) 2
* c cos _ (e sin O) 2j,',\_-(u 3 ,v 3 )-l,.\(e :2

Ce ) -- (e (.;o_:_ '2 "'_.2 0)3+ e cos 0 (c sin e) ;!COS

2 2

, 2i , 3 7 2
+cos4_i-u3v 3(_esmO _esm6ccos(_),_(u 3 -v 3 )\2ccosO,2(ecose) 2

- (e sin 0)'_)

-u3v3'/ 21e cos O e sin O - 26 e sin O (e cos O)2 5(,' sinO)3j '* cos soL-g-'C

2 '3-

" O) ecosO" 5 5
, 2 2,,'(coos` _[__ __. e cos O (e sin O)2 __(csin6)2_j !+ (u3 -v3 1\ 4 ,I 4 -

+sino__u3v 3, o 3 +5 3 2"'\l+_ecosO+_-(ecos6) 2 _(esinO) 2-_ecoso(esinO) j

/

2 2 , . 1 1 0,2p 1 8)3",fl+(u_3 -v_ ),\esmO-_-esinOecosO-_esinO(ecos -_(c_in

(.;u)
(cont'd on next page)
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":; 2. 2 " / 1 0)2 :_ 0)3)+, _-(u% _v 3 )-l/ \e sin S e cos O --< e sin O (e cos,, - -,-(e sin..

+sin20.-3u_v,_ 1-(csinG) 2-(ccosO) 2-4 esin6ccosS}

'_ "2 '" 1 O'
-s(ua--v a )\esin6_esinOecos .."-(2esinO+3esinOec°sO)

,<}(u_+v:,-/-,;

l l _1_ 8)2 1 " 5 _)3ain3c_, u>v.:,:_>7-, 7_-ccosO, (csin -_(ccosO) "_Tu(ccos

7 ) 2 2 / 1 I ' 7+ 2 c co_ _ (c sin O)2 * (u 3 -v 3 )<.e sin (__ -]-(_(c sin _)5 _ ]-6-e sin O (e cos O)2

9 8.) .<3 (u32+v32)_l> "-_esin_ecos + <._ csm6_,cos8

1 (e sin 6);_';-' 0)2"/-+_ -_ esin 8 (e cos .

,6 8)2 0)2 3 "_- sin40! u_v:{, ecosO_6(ecos -3(esin -_esinOccosej

<V," 9 o):+ .i.3esin 8_e sin Oe cos

- / 1 ] 1 1 2\`
+ sin 50,5U3Va<.-_(c cos 8) 2 +_(e cos 8) 3-_-(e sin 8) 2 - _-e cos 8 (e sin 8) j

• 2 2, _1 _ 5 1 3\-`
+ 5 tu 3 -v 3 }'._sin 8e cos 8+ _ esin 8(e cos _)2__i__( e sin 8) .,_

(49)
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V - FH{ST OI{DI';I{ SOLUTION OF "FILE

POLXR OBLATENESS PI';IITURBATION EQUATIONS

In solving tile perturbation equations derived in tile precedin/ section, the

,,(eaeral procedure is to solve exactly for as lar/e a piece of tile ecpati,)n as

possible, assuming thai. tile parmnc;crs ai)p_:aring in that piece are co_;stant

(except that parameter for wilich {,L;c .,olv,.s in _hat particular equation). " The

remaining terms arc then intc,_rat,,d i;,_tdi_;_ :,1i the parmneters constant and

the results are added to the soi;_:ic, ns _,i)tai;;c{l in the first step. This procedure

is justified because it is c(ittivg_icF, t to a second alq)lication of the variati_m-of-

t)ar:_mcters method in wt-ich only ficst order terms are rcta.incd. Tl,m_ in the

perturbation ecNation for aparamctc_'x, tn:_t t_a*t, labeledxti' in the preced-

ing section, is the piece of the c(,_mt',on that c:m be solved exactly under the

restrictions mentioned above. The re,mail',in/ part of the equation, which is

t

integrated keeping all ti,c paramctca's constant, was labeled x S in the prece(l-

ing secti_m.

"i_,> , e(Nations to be solved to obtain e c,,s 0, e sin 0, u 1, u 2, u 3, v 1, v 2

and v 3 arc Eqs. (40 throu/t, 47). Of these_ cq:_ations, those_ _l_';tcred"a" may be

divided into tile sets of coupled equations (,;0a) and (4,1a) , _4.ia) and (.;7a)'

,'rod (,i2a), (.t3a), (45a) alld (4(;:t_. W]lcsc sets arc solved by st:_ndard methods

wittl tl:c lollowin/ restriction: In each system of equation_, tho.sc i,arameters

on tile R. it. S. (right-hand side) whici_ do r, ot appear on tae I,. l[. 5. a:a'c lqcpt con-

strait. Tiros, for example, in the system of Eqs. (40a) m_d (4 llt) the parameters

g, Ug mid vg appc_u'ing on the R. IL S. are held constant on so]v_nx this system.

"i_,-,_ fir._t order solutions "u'e tt',en ttle following:

* Alti:ou_gh tile method employed here and that presc_'ibcci by the method of

averages i:avc different theoretical justifications, the applica:ion of the two
methods requires the solution of equations which appe:n" to be (Nite similar. 5
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O COS 0 _

i c sin 0

= COS _0

. sin _2 0

t cos,_ - sin© i

sin ._ cos:_

sin © cos 01

i\- cos 0 sinmI

f 1- oo_ -_z o ., \

1 + 2_o - l

" 1- sin _0
.... --_-- ( 2 ' (c sin 6) 0

_ _"__-- . (e cos 6)

___ sin ql+2--_--¢20 (c sh_ 6) 0

I+ 2(2 " _,'i+2(2 /

(50)

(c cos O)S

+

k_. tih_\.

- 3 (u302where (2 =

'_\/

'do/
o

_ 3 ;_ _,.-,
0 a.

+v30 )-I 4
_0

/

U r C °s 0

i I='

/- ,.o\

+ { "(u3)s )

. \j (v3) s'a_

where c i ,t
do

- sin >i !cos x_ 0
t
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where

a c a lo - b
S S d

-a _ a b c h1 _ C 5

c -c d d"L S C C 8

c -d d
Cc S b O

&
C

+

; (ui) s' d o

' /

, (u_) s d o

. t

(vi) s' d ,a /

\< i(V2)s do

\ /
/'

f

/

u 10_

u20_

vlO

v20 /

(52)

=- ( k21 + 23) cos 'X 1 0 >(':kll+2_g) cos )v2 0-( X4 -°9)c°s _'X3':O

a
s

b
S

+( Xal-._)cos ,k 4,c

= - ('k " +25)sin ]lkl]O _-{l_'l! +2?)sin '_X.) O-(;X41 -2£)Sin 'k.;:O
2 :

-_-(', X3 } - 2::;) sm ',X4 '_o
I

= (_),21 -2o) sin '>,l'..O-(ikll -2cj) sin'k 2110-(!x 4 -24) sin ',X3'0

b
C

+ (IXat-2_j sin :X,! 0I _2 '

= ( } X2 _ __ a_)<,OS _Xl _lO -- ( _X 1 _ --2(@C0$ tX2!O--(

+ (1X3!- 2cj) cos iX41 0
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and

= - (_k2! _2._)cos :>`1,0-_( kl t*2"_)cos !k 2

- ('k3! - 2,?) cos k 4 0

-2,_) cos !>,:t I o

Cs = - ('k2". + 23) sin )'10+(tkli +2_)stn !Xa2.10+(!>`4!' -2S)sin, I> 3̀ '_O

d
C

d
S

= - (i>'2_2_e)cos !kll o +(_X11- 2,_)cos iX2'!O- (lk4i - 2cy)cos ':>`3

= - (_>`2

+ ('t> 3̀

-2<)cos >,4!0

- 2cy) sm _>`1!0 + (i >`l

- 2,-j sin ki ©

- 2o) sin iX2 iO-(!>`4i-2o0sin ;>`3

O

©

(5:]) cont'd

g3
('¢=6 --

o"

r" O

_=e k ,,----t

,)

'kll =_T l*,cff _ -o"_r 1

!X2

I>,3

i>`3

o
' " 2,_-' 1

9

=(o- i),-,o' " Z3 + 1

/

=(o- 1) / 2+oo+1

The absolute value siZr',sused ],,ro
indicate that a factor i is omi::,:t[
from the X's which arc the ci,: .:,ctcr-

istic roots for the system of :iqs.

(42a, 43a, 45a, 46a).

"_",,,,,.equations to b, 5(,h'ect to obtain g are Eqs. (,tSa) and (481_). The R. II.S.

of i k,.(,l._a) is a perfect ctilfcrential if one takes into account the equations for
/

u,'., :rod v 3 (Eqs. 44a, 4,1b, 47a, ,17b). In Eq. (48b)the parameters appearing

h_ _l,e i{. _!. S. are given their initial values and one obtains finally the following
4

,,::prcssion for g
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_-k2 3(t/' '= _o_ - 12 _,.3'u coso _ v3 dino/ - U i 4. gS c[) (54)

tThe equation to be solved to obtain t is Eq. (,1.)j. Tl:c L. II.S. of this
[J

equation is a perfect differential, pr,,_i(lcd _>:,c assumes that a is a con._,ult,

,at), m_d that the t o occurrir,_ in the scconri Icrn_ on Iilc L. II. S. is albo a con-

stm_t. In a first order solution t!'.is is justified. Thus, the L. It. S. of the

equation integrates to

3:_0

t o (t) +- _ (t - t0t ))

In ti_c R. It.S. of the equation, i}',_ t_',,r._mctcrs :lrc assumed to have their initial

values :rod the intc.gration is t)crft,rm_l with rc.bpcct to ©. Tiros

3a 0 ,_a., - - o 2, .
=t00-_(t-t60 ) - =---------------- _ .... _,

t o (t) _ , i* (e cos 0)0 _ go "

(55)

+ integral of other terms.

The limits of integration, are zero and ©.

SECTION VI - DISCUSSION OF TILL" RESULT5 AND APPLICATItONS

Now that the perturbation equations and ti,wir firbt order ._;,,,uta,_,._ are avail-

able for cxmmination, some distinctive features of theparamelcr.-_ i;ccoi_,e ai>l,arcnt.

It has already been noted tkut the parameters U and V al-c perpencii_ula_- unit \ectors

which :arc to be reg:n'dcd :ts ri:4idly attached to tile tmau,:,c il]Oll],..'l'ltLllil _.cetol" (1

thro'dgbout the motion. These parameters thus differ in :,n ,:._>cntiai way from any

of ti_e conventional sets of parameters such as the Delau:;:,.v ,iements or init_ai

conditioa;s, because to relate the initial values of ttae parameters witi_ their values

at time t :'equires knowledge not only of the position ,and w'locit/ itTitially m_(t at

time t, iJut also a !_o_ i_,,ig-e of the trajectory between these ti:,ws. For m_y con-

vehtionai set of elements, on the other hand, knowledge of the initial and terminal

conditions is sufficient to determine the initial and terminal values of the elements.

It may thus appear at first >iKht that ti_e elements used in this report involve
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c_,;u!Aications that arc not prcsczt in the use of conventional elements. It must,

i:{,'.,,uvcr, also be rccall..d that the prcscnt clcmc;:ts arc so defined that the

i:',,!,:i,cnd_nt variable ,o has no perturbation dcrivativ,., V,l,ilc with eonw.ntional

clc:',_cnts the indcpc::dcpt variable, ust;allv vit?,cr truc or mean anomaly, does

have a pc:-turi0ation derivative, w}:i,:h /,_tr,,(h,<'c_ co_;qflic;,ti,,:;_ in tile derivation,

:a;d intu:_(ration of the pcrtucb;.t,,,,, ..(,a::ti<,,,o. Further, evc_-, th,,,a_,h the present

elements arc functions o: t}-,, ....._, ,,j,-;......_.,_,1_',, (:,:,d hence _,i" the i,:_;'tict,,_,r :_,.'rturbing. .

functio:; u.__cd), once the i,crt.irb.iti,,n cqtaati,,ns hart. been inh'>;ratcd ti,c fact th:_t

tl;e solution of ti_csc equations mull 1,c used t() dch.rmine the clcmcr, ts p,)ses no

fund;m,_cntal problem.

In tills report o:_l 3 tile fir._t order soluti(,:; ,,f flaw pcrturb;_io;i v.,;u:,liOllS has

l)ccn presented. To obtain th(' .-;,:c,md ordL::" solution Eqs. (,iu) _t) (.;:;) :,_',, inl,,_tratcd

:,g;dn rcplaci_:_( those pa.,'amct,_r._ :" TM,,c,,, consta._t m the lirst ,)rdcr intc;;,';,t/on i)y

their first order solutiop._. Ti:c i::tcgratio:: of ti:esL, Cql_lq.tit):;.-_ involvc._ a grc::t

deal of routine trigonom,:tric p,::mipalation and will be the ._;,l,j,.ct of a l_,:,:r re'port.

It is, however, possible to state a general conclusion on thc c,-_,.i:s of ;.'.,c integra-

tion. This conclusion is that the second order terms will oc sx_,:_li con;p,,red to

the first order terms for a time of tile order of 100 pcrio,;.s. Ti,i,, _-,;c,as that

for :my problem (for which ti_c first order solution has s_ilficivnt prwcision) tkc,

first order solution is usable and valid for about 100 periods. The reason for

this is that in the second order solution, terms of the form

and i - cos c _ (56)

2
occur with coefficients of the form A 1<2

for any ¢

where A is of order unity.

9

I _-coseo =l _ sin'<o
<_

it is evident that no such term cm_ creep into first order so long as

2

Ak 2 _<k 2

Noting that,
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It shca:iJ Lc remarked that if ( v;misl,c._ the: ',irst of the terms (5_;) is secular ;rod

t]l( 5_:_'c,iitl is a constAl_l., it _I;-_:_ out _at for at least two particular sets of initial

c,,;,_,itions there will be sccl,l:_r tci'ma, namely, for initial condikions such that

the ;m;;lc of inclination is 63.4 ° ;mti 67.8 ° . Thus, critical ar,_i,'s of in¢'iination

occur in tills formulation, but not .,. the same way as in c_,nw.a_io:,:il ta_._;ries,

for which only one critical anglL' ha.-, ])Cell ftKil'*d. The ._i_,nilic:,lit dtift.rt.i,cc is

[ilat in conventional thc<,rics the critical :mgic appears ;_a a sin_ul,,rity tl, the

second order ao!ution, whereas in the prcbt,l_t theory tile seCt)lid order s,,lution

ires no sin%ularity, ail,d while it is uni)¢,unded in time, it will not affect ti'_c first

order solution for aboJt It_0 perle, is.

One might inquire what sort of prc(q,_ioll call })cCXl,v.c:tw_i fr(,m the first

order theory. In order to) discuss this quv:sLion, it nlu._t iil,_t ,,c r,:mar:,cd

that paran_ctcrs associ: ..... ! with the Kepler probh'n_ may i,c >,a,aratcd it, to two

eatcy, orics. P:n'amct, ,'s such as the scmlmajor axis, the cot <.ntricity, and the

angle of inclination, as well a_ functions of such imran,ctcrs imve only short

period terms in their first urdcr corrections. Oti,cr parameters such as

:trgL;rn,mt of perigee conventionally contain not only ,qlort period tcrn;s but also

secular terms. No first order secular terms appear in this forn',uL_,tion because

of the way in which the difl crenti:,i e, taatic_ns (40) to (,t7) are s,'i)ar:ttcd. The closed

for_:_ contribution to the first ordcr,_,,iutions obtained in Scct_,,n IV from Eqs.

(.;Oa), (41a),...(47a) include the anaic)_ucs to the secular terms as'a'cll :,s such

sh<,rt period terms as could be includt.d in the closed form intogra',ion. Suppose

now t?,:tt ,row numerically compares trajecto W predictions based on the Kepler

probie:u, ;rased on t}_c first order solution derived ;a this report and based on a

i_i_npr_:,ision numerical integration. [tthc comp:trison is made for©= 2rr, all

short pe_'iod terms will disappear. Thoseparan:c:crs involving only short

period terms should bc the same for both the Kcp,cr m_d the first order predictions

m_d M:ouki agree to about six sig_ificant digits (since k22 = 10 -6) with the precision
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calcul:,tion. _lt_c rcmainin_ paramwters should I)e g-ivcn to about thi'cc _;_,n-c

s_, _,__ _,,, dii4its by the first order l.hcory lhan t)y the Kepler estin',atc. _1 tht_

comparis,>:: were made on fu::,..:;,,,:s of the elements, FalJlOr th:lll :4: ',i:c _.lemcnts

then_,sclvcs, one would stili expect the first order theory to yicl(i ,d?_)ut ti;ree

more S_,,_IlCm. L digits t;;:tn the Kepler estimate except for functi,q;s ll,_i, t)entlcnt

of pag&i_'_ctcrs COlttai_;ing secular terms. A comparison, ate -- ..,,'-, o_, i,,,sition

and velocity would thusbc cxpcctvd to yield, in :general, three m_,,'c di_i_s from

the first order estimate than for the Kepler estimate. Prelimin:_'y nun,cric:,l

comparisons indicate that this is indeed the case.

Th_ ::ppiic:ttion of ti:c theory ,icvclopcd in this report for prediction is

fairly dirccl. To obtain position, velocity and time corresponding to a spcci-

ficdc, o;',c simply evaluates the elements from Eqs. (50) - (55), ,and then sub-

stitutes in i.'qs. (5), (6) and (15). To el)tam position ,'rod velociky at a specified

time it is necessary to replace all clcment_ in Eq. (15) except t ando by d_eir

exprcssic:_s in terms ore, to obtains transcendental relation betweeno grad t.

The ar, klc o would then be obt:iu-,c,i by num,_'rieal solution of this equation. Once

o is kno_n, position and velocity arc obtained as above.

The boundary value probicm is somewhat more difficult. In tills _:;,._e one

would rt_'quire ka_owlcd_e of seven co_.ditions, some given at tile initial p,)int :m0

the rcsL :it the terminal point. No_, Eqs. (50) to (55) give the param, tcr._ as

functions of o and Eq. (1__) relates o and t. l.;qs. (5) and (6) give position m_d

velocity as functions of the parameters. Tt',c boundaw conditions would lilus

g_vc scv__.a equations for the _,etermination of six independent puran_.otcrs m_d

t. The :,,)iution of these equations ,aould have to be ca_tried out n,americaily

because 61" ti_cir tra_nscendental character.

in c,u;ciusion, one might comm,mt on some special solutions of the perturba-

tion cqua,:ons. K the i_itial conditions arc such that the initial orbit is either

cquatoria! or polar the U and V vectors arc constants of the motion. The pcrturl/,t-
g3

tie ,_, _:(_aa:ions (42) - (47) for U and V contain _ as a factor on the right hand side.

For polar orbits g3 vanishes and hence U and V are constant vectors. F_n" an

cquatori_.l o_'bit, u 3 = v 3 = 9 and hence, again, the right hand side of I-qs. (,t2) -

(47) for U :rod V vanishes. Tkis last result illustrates one advantage of these

aa



i)ai,_,F,c,t_rs. The conventional clc,q,cnta inclucic longitude of the node mui

nr:_(u:],cnl of pcrigec which arc not de,moo for e_latorial orbits and hence

modifications _-e required for tl_e treatment of this case.

9

In I<qs. (40) and (-tl) the cxprc>.>ion (1 - 3 cos = i) can be shown to be a

factor of ti_e right hm_d aide. Ti_is fat;or c:,:_;siics for an m_gle of inclination

of 5.t.74 ° a_d hence for a_ orl)it :,;,!ti,,ll.v :,t ti;is inclination the eccentricity

,,._ pararncter 0 (angle b_._,, <,, [ :rod pc.,-igcc) are constructs o, ti;_ u_otior,.

The critical angles G3.4 ° .w,¢, 67. ,-7 waieh appear tp, the second or,tcr tLcory

have no ob\,ious sigq_ificm_cc for thcparameters used in this report. It is

curious, however that these three m_>Vics i_nve the property fl_at

2. 1 1 1
COS i --

3'5'7

respccLively.
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